
1360

ItIICDONNELL
DOUGLAS

DATA/BASIC
Programming

Reference Manual

Programming

PROPRIETARY INFORMAnON

TI15 SonIiARE. DATA. OOC""EIITAHOI< Of FlItMIIII~E IlELllnD T.E~ETC. AIIO !HE
JnoII~I()IO OISCLOSE~ THU£!> A~E CONFlDEIITlAL ANP raO"IETAaY TO
":D~U[~~ DOUCLII~ cOItPun. lysnM~ COlt. ANY . atl TllP TIE 10rT­
IIARE.~E::oAR~~ESS Of THE FO"" III IIHICH It Ulln.IIO' FlMIIAIIE.IIO' IOCR
DIITII.NOF INfORMA~:ON.IU\Y It DSEC IY 0/< DISCLOSED TO OTIElS FO. lUIY
':;"OSE EXCEP~ u I'ECIFICA~LY ADTHORaED IN onl." IY IICOONNEI.L
DOUC~S COIIl'~n. SYSTEMS eOMPIINY. UCJ,I Elll. Ir ACCEPTJIIG TllS DOeU­
fIE': O~ u: I ~IZlIIG THIS Sor,...IIR[ACREES TKA~ NEITHU TIIS DOCUIIEN!. 'BE
sonNARE 110' THL UIFQRMAlIOIi DISCLOSED THEREIN lOR All' PUT TIEIIEor
SRA~: IE REPRODUCED OR 7IIA11SFEJtRED TO OT8I:' DOCOIInn NOR DIED O'
DIS::..oUt TO OTHERS FOIl IU\NUFACTU'IN~ OP Fca lUIY OTHER PORPOSE &xeEPT
A! SPECIFICALLY AUTlO'lZEP II .RITI.~ IY lie_ELL DDUG!.aS CCltPUTE.
S'STEMS COIIl'IIN •• AU IIIGHTS IIEIERYEIl.

e eO'.'IGH: UI' lIN IMPUILJUED IIOJI' I. IOCDOIIItUL DDUGI.AS CCltPUTER
IYSTEMS CClllPIIN •• ALL II I IOns JlESERYED.

REALITY®

DATA/BASICtm

Reference Manual

Release

2.3 5.3 6.0

Manual #

87-1360

MCDONNELL DOUGLAS
COMPUTER St'STEIMS COMPANY

Po. Office Box '.S01, Irvine, C.llfornla .2713
_I.phone: 7141250-1000 • TWX: '10-515-2441

This software, data, documentation or firmware related thereto,
and the information disclosed therein are confidential and
proprietary to McDonnell Douglas Computer Systems Co .. Neither
the software, regardless of the form in which it exists, nor
firmware, nor such data, nor information, may be used by or
disclosed to others for any purpose except as specifically
authorized in writing by McDonnell Douglas Computer Systems Co.
Recipient, by accepting this document or utilizing this software
agrees that neither this document, the software nor the
information disclosed therein nor any part thereof shall be
reproduced or transferred to other documents nor used or
disclosed to others for manufacturing or for any other purpose
except as specifically authorized in writing by McDonnell Douglas
Computer Systems Co.

Copyright 1987 An unpublished wprk by
McDonnell Douglas Computer Systems Company, all rights reserved.

REALITY'!, MICRODATAt!, ENGLISH ®, PRISM $ and WORDMATE ~ are
registered trademarks of McDonnell Douglas Computer Systems
Company.

DATA/BASICtm and SCREENPROtm are trademarks of McDonnell Douglas
Computer Systems Company.

TYMNET~ is a registered trademark of McDonnell Douglas Network
Systems Company.

PICK! and Pick Systems~ are registered trademarks of Pick
Systems.

Viewpoint'" is a registered trademark of Applied Digital Data
Systems, a wholly owned subsidiary of National Cash Register,
Inc.

VT'! is a registered trademark of Digital Equipment Corporation.

Chapter 1

Chapter 2

Chapter 3

Chapter 4

87-1360

Table of Contents

How To Use This Manual

Overview ..
Definition .
Features
Related Documents
Abbreviations
Conventions
Monetary Signs
Debugger .

DATA/BASIC Elements

Overview
Multiple Statements
Labels . . .
Blank Spaces and Lines .
Comments
Line Continuation.
Program Storage
Reserved Words
Variables and Constants
Assignments
Arithmetic Expressions .
String Expressions and Concatenation
Substring Extraction and Assignment
Relational Expressions
Pattern Matching . . .
Logical Expressions
THEN/ELSE Clause
Format Strings
Convers ions

DATA/BASIC Arrays

Overview
Dimensioned Arrays .
Dynamic Arrays . .
Dynamic Arrays vs. Dimensioned Arrays
Dynamic Array Referencing

Extraction
Replacement
Insertion and Deletion .

DATA/BASIC Statements

Overview
General Statements . .
Assignment Statements
Branching
Looping
Subroutine Branching .
Interprogram Transfers
Program Termination

1-3
1-)
1-)
1-)
1-4
1-4

. 1-5
1-5

2-)
2-)
2-)
2-)
2-4
2-5
2-5
2-5
2-6
2-8
2-9
2-11
2-1)
2-16
2-18
2-20
2-22
2-2)
2-27

)-)
)-)
)-5
)-7
)-9
)-10
)-12
3-15

4-)
4-3
4-)
4-)
4-)
4-4
4-4
4-4

iii

Table of Contents

Chapter 4

iv

DATA/BASIC Statements (Continued)

Miscellaneous Control Statements . .
Output Statements
Input Statements . .
Accessing SCREENPRO
Accessing PROC . . .
Accessing TCL . . .
File I/O Statements
Tape 1/0 Statements
Setting Locks
Dynamic Arrays . . .
Dimensioned Arrays .
ABORT ...
ASSIGN .
BREAK
CALL .
CASE ..
CHAIN
CLEAR
CLEARFILE
COMMON
CRT
DATA .
DEBUG
DEL
DELETE
DELETELIST
DIM
ECHO .
END
ENTER
EQU
FIND .
FINDSTR
FOOTING
FOR
GETLIST
GO ...
GOSUB
GROUPSTORE .
HEADING
IF (single-line)
IF (multiline)
INCLUDE
INPUT . . .
INPUT USING
INS
LOCATE
LOCK ...
LOOP ..
MAT
MATBUILD
MATINPUT USING

·1

4-4
4-5
4-5
4-5
4-5
4-5
4-6
4-6
4-7
4-7
4-7
4-8
4-10
4-11
4-13
4-15
4-17
4-19
4-20
4-21
4-23
4-24
4-26
4-27
4-29
4-30
4-31
4-32
4-33
4-34
4-35
4-37
4-38
4-39
4-40
4-42
4-44
4-45
4-46
4-48
4-50
4-52
4-54
4-55
4-57
4-59
4-61
4-65
4-66
4-68
4-70
4-72

87-1360

Chapter 4

Chapter 5

87-1360

Table of Contents

DATA/BASIC Statements (Continued)

MATPARSE
MATREAD
MATREADU
MATWRITE
MATWRITEU
NEXT
NULL
ON GOSUB
ON GOTO
OPEN •
PAGE ..
PERFORM
PRECISION
PRINT
PRINT (Using Output Formatting) ...
PRINTER
PRINTERR
PROCREAD
PROCWRITE
PROMPT
READ
READLIST
READNEXT . . .
READT
READU
READV . . .
READVU
RELEASE
REM
RETURN
REWIND
RQM . . . • . . . • • . . •
SELECT
SHARE
SLEEP
STOP
SUB . . .
UNLOCK
WEOF
WRITE
WRITELIST
WRITET
WRITEU
WRITEV
WRITEVU

DATA/BASIC Intrinsic Functions

Overview
String/Substring Manipulation
Math Functions
Format Conversions

4-73
4-75
4-76
4-77
4-78
4-79
4-80
4-81
4-83
4-85
4-87
4-88
4-91
4-93
4-95
4-97
4-98
4-99
4-100
4-101
4-102
4-103
4-104
4-106
4-107
4-108
4-109
4-110
4-111
4-112
4-113
4-114
4-115
4-117
4-119
4-120
4-112
4-124
4-125
4-126
4-127
4-128
4-129
4-130
4-131

5-3
5-3
5-4
5-4

v

Table of Contents

Chapter 5 DATA/BASIC Intrinsic Functions (Continued)

vi

Time and Date . . .
I/O Conversions
Numeric Capabilities
Logical Capabilities
Bit Manipulation . . .
Manipulating Dynamic Array
Miscellaneous Functions
@
ABS
ALPHA
ASCI I
BITCHANGE
BITCHECK .
BITLOAD
BITRESET .
BITSET .
CHANGE .
CHAR ...
CHECKSUM .
COL1/COL2
COS
COUNT
DATE .
DCOUNT
DELETE
DQUOTE
EBCDIC .
EXP
EXTRACT ...
FIELD
GETMSG
GROUP
ICONV
INDEX
INSERT
INT ...
LEN . . .
LN . .
MAXIMUM
MINIMUM
MOD . . .
NOT
NUM ...
OCONV
PWR .. .
REM
REPLACE
RND
SEQ
SIN
SPACE . . .
SPOOLER

. . .
Elements

5-4
5-4
5-4
5-5
5-5
5-5
5-6
5-7
5-11
5-12
5-13
5-14
5-15
5-16
5-17
5-18
5-19
5-20
5-21
5-22
5-23
5-24
5-25
5-26
5-27
5-29
5-30
5-31
5-32
5-33
5-34
5-35
5-36
5-37
5-38
5-40
5-41
5-42
5-43
5-44
5-45
5-46
5-47
5-48
5-50
5-51
5-52
5-54
5-55
5-56
5-57
5-58

87-1360

Chapter 5

Chapter 6

Chapter 7

87-1360

Table of Contents

DATA/BASIC Intrinsic Functions (Continued)

SQRT ...
SQUOTE ..
STR . . .
SUMMATION
SYSTEM ..
TAN .. .
TIME .. .
TIMEDATE .
TRIM ...
UNASSIGNED

DATA/BASIC Commands Entered at

Overview · · · .
BASIC . . · · · . . .
BASIC Verb with Map Option
BLIST . .
BREF . .
BVERIFY
CATALOG
DB . . .
DELETE-CATALOG
PRINT-CATALOG
PRINT-HEADER .
RUN . · · · DATA/BASIC and PROC

DATA/BASIC Symbolic Debugger

Overview
Symbol Table
Sample Exercise
Summary of Debugger Commands .

Introduction
Breakpoint and Trace Tables
Symbol Table
Execution Control
Special Commands . .
Exiting the Debugger .

$ Command
/ Command
? Command
@ Command
B Command
D Command
E Command
END Command
G Command
K Command
LP Command ..
N Command
OFF Command

TCL

. .

.

5-59
5-61
5-62
5-63
5-65
5-68
5-69
5-70
5-71
5-72

6-3
6-3
6-6
6-8
6-13
6-14
6-15
6-17
6-18
6-19
6-20
6-21
6-23

7-3
7-3
7-4
7-6
7-6
7-6
7-6
7-6
7-6
7-7
7-8
7-9
7-11
7-12
7-13
7-15
7-16
7-17
7-18
7-19
7-20
7-21
7-22

vii

Table of Contents

Chapter 7

Chapter 8

Appendix A

Appendix B

Appendix C

Appendix D

Appendix E

Appendix F

Appendix G

Index

viii

DATA/BASIC Symbolic Debugger (Continued)

P. Command
PC Command
T Command
U Command
Z Command

Programming Hints and Examples

Overview
Using System Delimiters . . .
Cursor Positioning
Opening Files
Repeating Operations
Unknown Number of Multivalues
Pythag Program .
Guess Program
Inv-Inq Program
Area Program . .
Profits Program

ASCII, Hexadecimal and Decimal Table

DATA/BASIC Messages

Variable Structure and Allocation

User Exit Conversions

Mask Character Conversions

Date Conversions

Using Denationalization from DATA/BASIC

7-23
7-24
7-25
7-26
7-27

8-3
8-3
8-3
8-3
8-3
8-4
8-5
8-6
8-7
8-8
8-10

87-1360

87-1360

Chapter 1
How To Use This Manual

Overview
Definition
Features
Related Documents
Abbreviations
Conventions
Monetary Signs . .
Debugger

1-3
1-3
1-3
1-3
1-4
1-4

. 1-5
1-5

1-1

Overview

Definition

Features

Related
Documents

87-1360

How To Use This Manual

This manual provides in-depth information on the
DATA/BASIC programming language. It is intended
for use by programmers familiar with the REALITY
operating system.

This manual describes the DATA/BASIC source
language, an extended version of Dartmouth BASIC.

BASIC (Beginners All-purpos,e Symbolic Instruction
Code) is a simple yet versatile programming
language suitable for expressing a wide range of
problems. Developed at Dartmouth College in 1963,
BASIC is a language especially easy for the
beginning programmer to master.

DATA/BASIC has the following features:

•

•
•
•
•
•
•
•

•
•
•
•

•
•
•
•
•
•
•
•
•

Optional statement labels (or statement
numbers) .
Statement labels of any length.
Multiple statements on one line.
Computed GOTO and GOSUB statements.
Complex IF statements.
Multiline IF statements.
Priority case statement selection.
String handling with variable length strings up
to 31,743 characters in 1Kbyte frame systems
(32,243 in other REALITY systems).
External subroutine calls.
Direct and indirect calls.
Magnetic tape input and output.
Fixed-point scaled arithmetic with up to six
decimal digit precision.
ENGLISH data conversion capabilities.
REALITY file access and update capabilities.
File level or item level lock capabilities.
Pattern matching.
Dynamic arrays.
Location of elements in dynamic arrays.
Math functions.
DATA/BASIC Symbolic Debugger.
Ability to PERFORM any TCL expression.

DATA/BASIC interfaces with both the ENGLISH
language and the PROC programming language.
Frequent references to these languages are made
throughout this document. If you need additional
information on either of these languages, please
refer to the ENGLISH Programming Reference Manual
and the PROC Programming Reference Manual.

1-3

How To Use This Manual

Abbreviations The following abbreviations may appear in the
text:

Conventions

1-4

VM
AM
SVM
MID
DICT
EOF
BOT

Value Mark
Attribute Mark
Subvalue Mark
Master Dictionary
Dictionary File
End-of-File Mark
Beginning-of-Tape Mark

The fo1lowing conventions apply to this manual.

Convention

TEXT

UPPER CASE

lower case

<RETURN>

{ }

{ } ...

Meaning

Boldface text represents your
input.

Characters printed in upper
case must be entered exactly as
shown.

Characters or words printed in
lower case are parameters that
you supply (e.g., when you see
file-name, type in the actual
name of your file).

Keys, such as Return and
Control, appear in angle
brackets, with the name of the
appropriate key to press
inside.

Any parameter enclosed in
braces is optional.

Brackets indicate a choice
between two or more parameters.
Only one of the parameters in
brackets may be selected.

If an ellipsis is used in the
syntax of a command, it means
that the parameter immediately
preceding the ellipsis may be
repeated any number of times.

If an ellipsis is used in an
example, it means the line is
shown as more than one line in
this manual but must be entered
as one line.

87-1360

Conventions
(cont"d)

Monetary Signs

Debugger

87-1360

How To Use This, Manual

Whenever a term is introduced or defined, it
appears in boldface type.

Throughout this manual, reference is made to the
dollar sign ($). In other countries, the dollar
sign may be replaced by the monetary sign of the
currency of that country and the screen will
display the appropriate monetary sign. In such
cases, please interpret all, references to the
dollar sign accordingly.

The DATA/BASIC Symbolic Debugger, a unique feature
of REALITY, facilitates debugging new DATA/BASIC
programs and provides a means for maintaining
existing programs.

The DATA/BASIC Symbolic Debugger incorporates the
following features:

•
•
•

•
•

•
•
•
•
•

•
•
•

•

•
•
•
•
•
•
•

Single statement execution.
Multiple statements execution.
DATA/BASIC Symbolic Debugger entered upon
execution of the 'DEBUG' statement.
Break execution on a selected statement number.
Break execution when a variable contains a
certain value.
Display current line number.
Display variables.
Display executing program name.
Display arrays.
.Automatically display variable or array values
at execution breaks.
Change any variable or array value.
Continue execution after an execution break.
Proceed through a selected number of execution
breaks.
Resume execution at a particular statement
number.
Inhibit program output.
Spool program output to printer.
Output to terminal only.
Dump contents of all variables and arrays.
Transfer control to System Debugger.
End execution of program.
Log off.

1-5

87-1360

Chapter 2
DATA/BASIC Elements

Overview
Multiple Statements
Labels
Blank Spaces and Lines
Comments
Line Continuation.
Program Storage ..
Reserved Words . . .
Variables and Constants
Assignments
Arithmetic Expressions .

. .

String Expressions and Concatenation
Substring Extraction and Assignment
Relational Expressions
Pattern Matching . . .
Logical Expressions
THEN/ELSE Clause
Format Strings
Conversions

2-3
2-3
2-3
2-3
2-4
2-5
2-5
2-5
2-6
2-8
2-9
2-11
2-13
2-16
2-18
2-20
2-22
2-23
2-27

2-1

Overview

Multiple
Statements

Labels

Blank Spaces
and Lines

87-1360

DATA/BASIC Elements

This chapter explains some of the elements of the
DATA/BASIC language.

A DATA/BASIC program consists of a sequence of
DATA/BASIC statements terminated by an END
statement. More than one statement may appear on
the same program line. Multiple statements must
be separated by semicolons. For example:

X=o; Y=l; GOTO 50

Note: It's easier to use the DATA/BASIC Symbolic
Debugger if only one statement appears on
each line.

Any DATA/BASIC statement may begin with an
optional statement label. A statement label
allows that statement to be referenced from other
parts of the program.

You can use either numeric or alphanumeric labels
for branching purposes. Alphanumeric labels must
end with a colon (:). The colon is not used when
referencing an alphanumeric label (e.g., GO
MAINLOOP). For example:

MAINLOOP:
INPUT X
IF NOT(NUM(X» THEN GOTO MAINLOOP
ON X GOTO 10,20,30

10 PRINT "FIRST"; GO MAINLOOP
20 PRINT "SECOND"; GO MAINLOOP
30 PRINT "THIRD"; GO MAINLOOP
FINISH: END

In this example, MAINLOOP and FINISH are
alphanumeric labels, while 10, 20 and 30 are
numeric labels.

Unless stated otherwise, blank spaces appearing
in the program line (that are not a part of a data
item) are ignored. Therefore, you may use blanks
freely within a program for the sake of
appearance.

2-3

DATA/BASIC Elements

Blank Spaces
and Lines
(Continued)

Comments

2-4

Blank lines may be inserted between lines of code
or comment lines. For example:

REM Program to print the
~ ~ ~ blank line

REM numbers from 1 to 10.
1=1

5 PRINT I
IF I = 10 THEN STOP

~ ~ ~ blank line
1=1+1
GOTO 5
END

You may place comments anywhere in a DATA/BASIC
program without affecting program execution.

A comment is specified by the REM statement, an
asterisk (*), or an exclamation point (!). (The
exclamation point (!) is a special case.) For
example, the statements below are all valid
comment lines:

REM THESE STATEMENTS DO NOT
* AFFECT PROGRAM EXECUTION
X=Y+3; ! ASSIGN SUM OF Y+3 TO VARIABLE X

Note: If you use an exclamation point (!) at the
beginning of a comment line (or all by
itself), a line of asterisks will be
printed when the program is BLISTed.

A comment may appear on a line all by itself, or
it can appear at the end of a line of code. If
this is the case, a semicolon (;) must separate
the comment from the statement(s) preceding it.
For example:

1=1+1; *Increments the counter

Note: Do not place an equal sign (=) after the
letters REM unless the entire string that
follows is enclosed in quotes.

For more information about comment lines, refer to
the topic "REM" in Chapter 4, "DATA/BASIC
Statements".

87-1360

Line
Continuation

Program
Storage

Reserved
Words

ABS
ALPHA
AND
ASCII
AT
BITCHANGE
BITCHECK
BITLOAD
BITRESET
BITSET
BY
CAPTURING
CASE
CAT
CHANGE
CHECKSUM
CHAR
COLI
COL2
COS
COUNT
DATE
DCOUNT

87-1360

DATA/BASIC Elements

Lines can be continued by inserting an ellipsis
(...) at the end of a line break. You can even
include comment lines between the parts of a
continued line. For example:

PRINT 'THIS IS AN EXAMPLE OF ': ... ;* This is a
* comment embedded between continued
lines 'LINE CONTINUATION.'

Note: There is no limit to the number of times a
line can be continued.

A DATA/BASIC program is stored as a file item and
is referenced by its item-id. (The item-id is the
name given to it when it is created with the
Editor.) An individual line within a DATA/BASIC
program is an attribute.

DATA/BASIC contains several reserved words. These
words cannot be used as variable names or as names
of subroutines. They are:

DELETE LE RTNLIST
DO LEN SEQ
DQUOTE LN SETTING
EBCDIC LOCKED SIN
ELSE LT SPACE
END MATCH SPOOLER
EQ MATCHES SQUOTE
EXP MAXIMUM SQRT
EXTRACT MINIMUM STEP
FIELD MNUM STR
FROM MOD SUMMATION
GE NE SYSTEM
GETMSG NEXT TAN
GO NOT THEN
GOSUB OCONV TIME
GOTO ON TIMEDATE
GROUP OR TO
GT PASSLIST TRIM
ICONV PWR UNASSIGNED
IN REM UNTIL
INDEX REPEAT USING
INSERT REPLACE WHILE
INT RND

2-5

DATA/BASIC Elements

VARIABLES AND CONSTANTS

Definition

Numeric
Constants

String
Constants

Variables

2-6

There are two kinds of data: numeric and string.
Numeric data consists of a series of digits and
represents an amount. String data consists of a
set of characters, such as a name and address.
These data types are represented in DATA/BASIC as
either variables or constants.

A numeric constant can contain up to 15 digits,
including fractional digits. With a default
precision of 4, the effective range is
-14,073,748,835.0000 to 14,073,748,835.0000.

The unary minus sign specifies a negative
constant. For example, -3.4, -17000000 and
-14.3375 are all negative constants.

A string constant is represented by a set of
characters enclosed in either single or double
quotes. If a single quote mark is to be included
as part of the string, then the string must be
delimited by double quote marks, and vice versa.
For example:

"Mr. Wilson's report"

'Test of the "GOTO" statement'

A string may contain from 0 to 31,743 characters
(in systems with lKbyte frame size - 32,243 in
other REALITY systems). If only a RETURN is
entered in response to an INPUT statement, a null
string is created.

Data can also be represented as variables. A
variable may contain either a numeric or string
value, which may change dynamically throughout
execution of the program.

Variable names consist of an alphabetic letter
followed by zero or more letters, numbers,
punctuation marks or symbols. (Commas and hyphens
are not allowed.) A variable name cannot contain
spaces.

A variable name identifies that variable, and the
name remains constant throughout program
execution. The length of a variable name may be
from 1 to 31,767 characters in systems with lKbyte
frame size (32,267 in other REALITY systems).

Note: DATA/BASIC reserved words should not be used
as variable names. (A list of reserved
words can be found on page 2-5.)

87-1360

DATA/BASIC Elements

VARIABLES AND CONSTANTS (Continued)

Examples

87-1360

Examples of valid string constants are:

"ABC%123#*4AB"
, 1Q2Z '
"A 'literal' string" , ,

Examples of valid variable names are:

X
B$ ••• $
Data.Length
Z ••• $
var

2-7

DATA/BASIC Elements

ASSIGNMENTS

Definition

Syntax

Comments

Examples

2-8

The simple assignment statement is used to assign
a value to a variable.

variable = expression

The expression on the right side of the equal sign
is evaluated and the result is stored in the
variable on the left. Exp~ession can be any valid
DATA/BASIC expression. For example:

ABC = 500
x2 = (ABC+I00)/2

The first statement assigns the value of 500 to
the variable ABC. The second statement assigns
the value of 300 to variable X2.

String value may also be assigned. For example:

VALUE = "THIS IS A STRING"
SUB = VALUE[6,2]

The first statement assigns the string "THIS IS A
STRING" to the variable called VALUE. The second
statement assigns the substring "IS" to variable
SUB. (For more information on substring
assignments, refer to the topic "Substring
Extraction and Assignment" in this chapter.)

X=5

Assigns the value 5 to variable X.

ST="XXXYZ"

Assigns the string "XXXYZ" to variable ST.

STI = ST[4,1]

Assigns the substring "Y" to variable STI.

87-1360

DATA/BASIC Elements

ARITHMETIC EXPRESSIONS

Definition

Precedence

87-1360

Arithmetic expressions consist of numeric values
and arithmetic operators. The numeric values may
be constants, variables or intrinsic functions.

The simplest arithmetic expression is a single
numeric constant, variable or intrinsic function.
If the arithmetic operator is not expressed, it is
implied to be a unary +. A simple arithmetic
expression may combine two operands using an
arithmetic operator. More complicated arithmetic
expressions are formed by combining simple
expressions using arithmetic operators.

Expressions are evaluated by performing the
operations specified by each of the arithmetic
operators on the adjacent constants, identifiers
or intrinsic functions. (Intrinsic functions are
discussed in a subsequent chapter.)

When more than one operator appears in an
expression, operations are performed in the order
of their precedence. If two or more operators
have the same precedence, the leftmost operation
is performed first. (Refer to Figure 2-1.)

~tor ~tion PrecedeIx:e

() Expression within parameters 1
~ Exponents 2
+ - Unary plus and minus 3
* / Multiplication and division 4
+ - Addition and subtraction 5

Fonnat Strings 6
Concatenation 7

LT,+, ... Relational operators 8
AND,OR Logical AND or OR 9

Figure 2-1. Operator Precedence

Any subexpression may be enclosed in parenthesis.
Within the parenthesis, the rules of precedence
apply. However, the parenthesized expression as a
whole has the highest precedence and is evaluated
first. For example:

(10+2)*(3-1) = 12*2 = 24

2-9

DATA/BASIC Elements

ARITHMETIC EXPRESSIONS (Continued)

Strings in
Arithmetic
Expressions

Examples

2-10

Parenthesis may be used anywhere in order to
clarify the order of evaluation, even if they do
not change the order.

If a non-null string value containing only numeric
characters is used in an arithmetic expression, it
is treated as a decimal number. For example:

123 + "456" = 579

If you use a string containing nonnumeric
characters in an arithmetic expression, when you
run the program the following message will be
displayed:

[816 J NON-NUMERIC DA'l'A WHEN NUMERIC REQUIRED; ZERO USED!

EXQression Answer

2+6+8/2+6 Evaluates to 18
12/2*3 Evaluates to 18
12/(2*3) Evaluates to 2
A+75/25 Evaluates to A + 3
-5+2 Evaluates to -3
-(5+2) Evaluates to -7
8*(-2) Evaluates to -16
5*"3" Evaluates to 15
3:2*2 Evaluates to 34

87-1360

DATA/BASIC Elements

STRING EXPRESSIONS AND CONCATENATION

Definition

Substrings

A string expression may be any of the following: a
string constant, a variable with a string value, a
substring or a concatenation of string
expressions. String expressions may be combined
with arithmetic expressions.

A substring is a set of characters which makes up
part of a whole string. For example, "SO.", "123"
and "ST." are all substrings of the string "1234
SO. ELM ST."

Substrings are specified by a starting character
position and a substring length, separated by a
comma and enclosed in square brackets. For
example, if the current value of variable S is the
string "ABCDEFG", then the current value of S[3,2]
is the substring "CD", (i.e., the two-character
substring starting at character position 3 of
string S).

If a negative number is specified as the starting
character position, then count backward from the
end of the string to find the first character of
the substring. For example, if string A = "9382",
then A[-2,2] equals the substring "82".

For more information on substrings, refer to the
next topic, "Substring Extraction and Assignment".

Concatenation Strings may be concatenated using the colon (:) or
CAT operator. Concatenation of two strings
appends the characters of the second operand onto
the end of the first. For example, both of the
following strings evaluate to the string "An
example of concatenation":

87-1360

"An example of " CAT "concatenation."

"An example of ":"concatenation."

Multiple concatenation operations are performed
from left to right. Subexpressions in parenthesis
are evaluated first.

The concatenation operator treats both its
operands as string values. For example:

56:"ABC"

evaluates to 56ABC.

2-11

DATA/BASIC Elements

STRING EXPRESSIONS AND CONCATENATION (Continued)

Examples

2-12

In the

Z
A =

CAUTION

Segment marks (X'FF') are used by
DATA/BASIC as string terminators.
They cannot be manipulated or
concatenated to strings.

following examples:

"EXAMPLE"
"ABC123".

Expression Answer

Z[1,4] Evaluates to "EXAM"

A CAT Z Evaluates to "ABC123EXAMPLE"

Z[-2,2] Evaluates to "LE"

A . Z[l,l] Evaluates to "ABC123E" .
A[6,l]+5 Evaluates to 8

Z CAT " ONE" Evaluates to "EXAMPLE ONE"

87-1360

DATA/BASIC Elements

SUBSTRING EXTRACTION

Definition

Syntax

Comments

The assignment statement extracts substring values
from strings.

x = string[n,m]

X = string{<attr#{,value#{,subvalue#}}>}{[n,m]}

X = string{(array)}{<attr#{,value#{,subvalue#}}>}
{[n,m] }

The value n is the starting character position and
m is the length of the substring.

In the second form, the substring value is
extracted from a dynamic array. In the third
form, the substring value is extracted from a
dimensioned array. In both cases, the value n is
the starting position within the array, attribute,
value or subvalue. For more information about
array extraction and assignment, refer to Chapter
3, "DATA/BASIC Arrays".

If you specify a negative number as the starting
character position (n), then you count backward
from the end of the string to find the first
character of the substring. For example, if
string A = "3621", then A[-2,2] equals the
substring "21".

If you specify -1 as the length of the substring
(m), the substring starting at position nand
continuing through the end of the string is
replaced. This makes it easy to manipulate
strings of unknown length.

In the statement:

X = VAR[n,m]

nand m have the following meanings:

n >= 0 The starting position of the substring,
from the left. (0 and 1 both indicate
the first character.)

n = 0 Same as the value n = 1.

n < 0 The starting position of the substring,
from the right (e.g., -1 is the last
character of the string, -2 is second to
the last, etc.)

87-1360 2-13

DATA/BASIC Elements

SUBSTRING EXTRACTION (Continued)

Examples

2-14

m > 0 The number of characters, starting from
character n to extract. Characters are
extracted from left to right.

m = 0 Returns a null string.

m < 0 The number of the character, counting
from the ending position, at which to
stop substring extraction. For example:

If X = "ABCDEFGH", then Y=X[3,-2] yields
the result "CDEFG". Starting with the
value of the third character position
(C), we extracted the string up to and
including the second-to-the-last
character (G).

VAR = "123456"
X = VAR[3,2]

Extracts the substring in VAR, starting in
position 3 with a length of 2, and assigns the
resulting value of 34 to X.

87-1360

DATA/BASIC Elements

SUBSTRING ASSIGNMENT

Definition

Syntax

Comments

87-1360

The assignment statement assigns a value to a
substring of a variable.

X[n,m] = expression

X {<attr#{,value#{,subvalue#}}>}{[n,m]} =
expression

X{(array)}{<attr#{,value#{,subvalue#}}>}{[n,m]} =
expression

In the first form the value n is the starting
character position and m is the length of the
substring.

In the second form, expression is assigned to a
subvalue of a dynamic array and attr#, value#, and
subvalue# represent the attribute, value and
subvalue, respectively. The value n is the
starting position within the attribute, value or
subvalue.

In the third form, expression is assigned to a
subvalue of a dimensioned array. Array represents
an array reference, and attr#, value#, and
subvalue# represent the attribute, value and
subvalue, respectively. The value n is the
starting position within the array element,
attribute, value or subvalue.

You can specify any of the parameters above or all
of them. This discussion concentrates on simple
substring extraction and assignment, therefore the
emphasis is on the first form above, X[n,m] =
expression. For more information about array
extraction and assignment, refer to Chapter 3,
"DATA/BASIC Arrays".

If you specify a negative number as the starting
character position (n), then you count backward
from the end of the string to find the first
character of the substring. For example, if
string A = "3621", then A[-2,2] equals the
substring "21".

If you specify -1 as the length of the substring
(m), the substring starting at position nand
continuing through the end of the string is
replaced. This makes it easy to manipulate
strings of unknown length.

2-15

DATA/BASIC Elements

SUBSTRING ASSIGNMENT (Continued)

Examples

2-16

In the statement

x [n , m] = " ABC"

nand m have the following meanings:

n >= ° The starting position of the substring
counting from the left. (0 and 1 both
indicate the first character.)

n < ° The starting character of the substring
in X, counting backward from the right.

m > ° The number of characters to replace in
the substring in X, starting with
character n and continuing left to
right.

m ° A substring of zero length is replaced
in X, meaning that the new string ("ABC"
in the example), is inserted, starting
at character position n. If n >= 0, the
new string is inserted to the right of
n. If n < 0, the new string is inserted
to the left of n. X[I,O] concatenates a
string to the front of X and X[-I,O]
concatenates a string to the end of X.

m < ° The ending point of the substring,
counting from the right side of the
string. If m is -1, the substring is
replaced, from n to the end of the
string, with the expression on the
right-hand-side.

X = "ABCDEFGH"
X[-S,-3] = "VWXYZ"

Replaces the substring starting 5 character
positions from the right and ending 3 positions
from the right in string X. The new value of
string X is "ABCVWXYZGH".

A = "99999"
A[I,O] = "DOD"

Concatenates the value DOD to the front of string
A. The new value of A is "00099999".

87-1360

DATA/BASIC Elements

RELATIONAL EXPRESSIONS

Definition

Relational
Operators

Comments

Arithmetic
Relations

String
Relations

87-1360

A relational expression consists of a relational
operator applied to a pair of arithmetic or string
expressions.

Symbol

< or LT
> or GT
<= or LE
>= or GE
= or EQ

Operation

less .than
greater than
less than or equal to
greater than or equal to
equal to

#, < >, >< or NE
MATCH or MATCHES

not equal to
pattern matching

A relational operation evaluates to 1 if the
relation is true, to 0 if the relation is false.

Relational operators have lower precedence and are
therefore evaluated after all arithmetic and
string operations have been performed.

Relational expressions can be divided into two
types: arithmetic relations and string relations.

An arithmetic relation is a pair of arithmetic
expressions separated by anyone of the relational
operators. For example:

3 > 4

6 >= 6

(3 is greater than 4) = false = 0

(6 is greater than or equal to 6)
true = 1

5+1 < 4*2 (5 plus 1 is less than 4 times 2) =
true = 1.

A string relation may contain a pair of string
expressions, or a string and an arithmetic
expression separated by anyone of the relational
operators. If a relational operator encounters
one string operand and one arithmetic operand, it
treats them both as strings.

In string relations, characters are compared one
at a time from left to right. Characters are
evaluated according to their numeric ASCII code
equivalents. The string with the higher ASCII
code equivalent is considered to be "greater than"
the other string. For example:

AAB > AAA

2-17

DATA/BASIC Elements

RELATIONAL EXPRESSIONS (Continued)

Examples

2-18

This relation evaluates to 1 (true), because the
ASCII equivalent of B (66) is greater than the
ASCII equivalent of A(65).

If two strings are not the same length, but the
shorter string is identical to the beginning of
the longer string, the longer string is considered
to be "greater" than the shorter string. For
example:

"STRINGS" GT "STRING"

This relation evaluates to 1 (true).

Note: The null string ("") is less than zero.

Expression

4 < 5

"0" EQ "A"

"Q" < 5

Q EQ 5

"XXX" LE "XX"

o > ""

Answer

Evaluates to 1 (true)

Evaluates to 0 (false)

Evaluates to 0, because the
ASCII equivalent of Q (81)
is greater than the ASCII
equivalent of 5 (53).

Evaluates to 1 if current
value of variable Q is 5.

Evaluates to O.

Evaluates to 1.

87-1360

DATA/BASIC Elements

PATTERN MATCHING

Definition

Syntax

Comments

Multiple
Match Strings

87-1360

Pattern matching compares a string value to a
predefined pattern or patterns. Pattern matching
is specified by the MATCH or MATCHES relational
operator.

expression MATCH{ES} expression

MATCH(ES) compares the string value of the
expression to the predefined pattern (which is
also a string value). If it matches, it evaluates
to 1 (true). If it does not match, it evaluates
to 0 (false).

The pattern may consist of any of the following:

• An integer number followed by the letter N,
which tests for that number of numeric
characters.

• An integer number followed by the letter A,
which tests for that number of alphabetic
characters.

• An integer number followed by the letter X,
which tests for that number of numeric or
alphabetic characters.

• A literal string enclosed in quotes, which
tests for that literal string of characters.

If the integer number used in the pattern is 0,
the relation evaluates to true only if all the
characters in the string match the specification
letter (N, A or X). For example:

X MATCH "OA"

This relation evaluates to 1 if the current string
value of X consists of alphabetic characters only.

Note: A null string matches OA, ON, OX and "".

MATCH(ES) can compare a string value to more than
one pattern at the same time. Simply separate
each string with a value mark (XX'FD'). For
example:

IF X MATCHES "lN3A]lN3A2N" THEN ...

2-19

DATA/BASIC Elements

PATTERN MATCHING (Continued)

Examples

2-20

If X contains either one numeric followed by three
alphabetic characters or one numeric followed by
three alphabetic characters followed by two more
numerics, the statements following the THEN clause
will be executed.

Z MATCHES '9N'

This example evaluates to 1 (true) if the current
value of Z consists of 9 numeric characters;
evaluates to 0 otherwise.

B MATCH '3N"-"2N"-"4N'

Evaluates to 1 if B contains three numerics,
followed by a hyphen, two numerics, a hyphen, and
four numerics; 0 otherwise.

A MATCHES "ON'. 'ON"

Evaluates to 1 if the current value of A is any
number containing a decimal point, or just a
decimal point by itself; evaluates to 0 otherwise.

"ABC" MATCHES "3N"

Evaluates to O.

B MATCHES "2A]3N"

Evaluates to 1 if the value of B consists of 2
alphabetic characters or 3 numerics; 0 otherwise.

X MATCH"

Evaluates to 1 if X contains a null string.

87-1360

DATA/BASIC Elements

LOGICAL EXPRESSIONS

Definition

Logical
Operators

COllUDents

Precedence

Operation

Examples

87-1360

Logical expressions (also called Boolean
expressions) consist of logical operators applied
to relational or arithmetic expressions.

Symbol

AND or &
OR or !

Operation

logical AND
logical OR

Logical operators operate on the true or false
results of relational and arithmetic expressions.

Note: Relational expressions are false if they
evaluate to 0 and true if they evaluate to
1.

Arithmetic expressions are false if they
evaluate to 0 and true if they evaluate to
anything other than O.

Logical operators have the lowest precedence and
are only evaluated after the other operations have
been performed. If two or more operators appear
in an expression, the leftmost is performed first.

The expression a OR b is true (1) if a and/or b is
true. It is false (0) only if both a and bare
false.

The expression a AND b is true (1) only if both a
and b are true. It is false (0) if a and/or b is
false.

You may use the NOT intrinsic function in logical
expressions to negate (invert) the expression.
(Refer to Chapter 5, "DATA/BASIC Intrinsic
Functions" .)

A=16
X = 1 AND A

Evaluates to 1, because the current value of A is
nonzero.

2-21

DATA/BASIC Elements

LOGICAL EXPRESSIONS (Continued)

A=4

2-22

B=l
J=13
Y=A*2-5>B AND 7>J

Evaluates to 0 (false), because the value of 7>J
is false. Both expressions would have to be true,
in order for the result to be true.

1 AND (0 OR 1)

Evaluates to 1, because the expression within the
parenthesis (which is evaluated first) is true and
the first value is true.

Xl AND X2 AND X3

Evaluates to 1 if the current value of each
variable is nonzero; evaluates to 0 otherwise.

"XYZ1" MATCHES "4X" AND X

Evaluates to 1 if X is nonzero, because the first
expression is true.

87-1360

DATA/BASIC Elements

THEN/ELSE CLAUSE

Definition

Syntax

Cononent

Where Used

Examples

87-1360

Any DATA/BASIC statements that require or allow a
THEN and/or an ELSE clause have the same syntax.

THEN statement(s) {ELSE statement(s)}

ELSE statement(s)

Statements may be any number of valid DATA/BASIC
statements, either ~eparated by semicolons or
contained on separate lines and followed by an END
statement.

The THEN/ELSE clause is used with the following
DATA/BASIC statements:

FIND LOCATE READ
FINDSTR LOCK READLIST
GETLIST MATINPUT USING READNEXT
IF MAT READ READT
INPUT MATREADU READU
INPUT USING OPEN

The ELSE clause is used with the PROCREAD
statement.

IF X=O ELSE STOP

READV
READVU
REWIND
WE OF
WRITET

If the value of X is zero, control passes to the
next statement; otherwise, the program terminates.

IF X=O THEN Y=1;Z=2;ELSE Y=2;Z=2

If X equals 0, the values 1 and 2 are assigned to
variables Y and Z respectively; otherwise, both Y
and Z are given the value 2.

IF X=O THEN Y=1;Z=2 ELSE

IF Z=O THEN STOP
Y=10

END

If the value of X is 0, then Y and Z are assigned
the values of 1 and 2 and control passes to the
statement following END. Otherwise, if Z equals
0, the program terminates; if not, Y is assigned a
value of 10, and control passes to the statement
following END.

2-23

DATA/BASIC Elements

FORMAT STRINGS

Definition

Syntax

Parameters

#r

2-24

Print-list values in PRINT and CRT statements can
be formatted using format strings. (Refer to
Chapter 4, "DATA/BASIC Statements" for more
information on the PRINT and CRT statements.)

"{j}{$}{,}{n}{field}"

The value j is either the letter L or the letter
R, specifying left or right justification. (L is
the default.)

A dollar sign ($) concatenates a dollar sign onto
the front of the value.

A comma (,) inserts a comma between every three
digits to the left of the decimal point.

The value n specifies the number of fractional
digits to print, in the range 0-4 (or 0-6 if
extended precision is used).

Field specifies the width of the field within
which the value is to be left- or right-justified.
Field can be padded out with spaces, zeros or
asterisks. The following formats are available:

Symbol

.. or #r
%r
*r

Meaning

Fill with spaces
Fill with zeros
Fill with asterisks

The number of #'s present or the value of integer
r determines the number of character positions in
the field. For example:

X=4; Y=1
PRINT Y:X "R##########"

This example prints the following values:

1 4

Note: The above example also could have been
written as PRINT Y:X "R#10".

If the number of #'s or the value r is less than
the number of characters to be printed, the
leftmost characters in a right-justified field or
the rightmost characters in a left-justified field
will be truncated. No indication of truncation is
provided.

87-1360

DATA/BASIC Elements

FORMAT STRINGS (Continued)

%r

*r

Multiple
Format
Strings

Multiple
Formatted
Values

87-1360

Zero fill is specified by %r. For example:

PRINT 12345.678 'R2%10'

This example prints the value:

0012345.68

To fill the field with asterisks, specify *r as
the field parameter. For example:

X=4 "L*5"
PRINT X

This example prints the following:

4****

Note: A format string can be assigned to a
variable.

Multiple format strings may be specified
contiguously and will operate from left to right.
For example:

PRINT x*y '2' 'L#20'

This example first rounds the result of x*y to 2
decimal places and prints that result left­
justified in a field of 20 blanks.

You can format more than one value in a PRINT
statement. Simply separate the values with a
colon (:) and format them individually. For
example:

X = 2; Y = 1
PRINT X "L$######" : Y "L$%5"

This example prints the following:

$2 $1000

2-25

DATA/BASIC Elements

FORMAT STRINGS (Continued)

Examples In the following examples, b represents a blank
space.

2-26

Print statement Value of A

PRINT A L#########"
PRINT A R#########"
PRINT A L******"
PRINT A R$,2#########"
PRINT A R$,2#9"
PRINT A R,2#########"
PRINT A R2#9"
PRINT A R%10"
PRINT A R%%%%%"
PRINT A*2 "L2#########"
PRINT A "L,O#####"
PRINT A+1 "R1#S"
PRINT A*6 "2" "R%5"
PRINT A $2"
PRINT A L$#######"
PRINT A L$#3"
PRINT A R$,#######"
PRINT A R$,#######"
PRINT A #####"
PRINT A R4####"
PRINT A R$,#10"
PRINT A-7 "L,#9"
PRINT A "L4####"
PRINT A "2#5"
PRINT A "R2#10"

2
2
16
10.2
1000
1000
1000
4.3
56
1000
2300.5
7.9
1111
0.1234
0.1234
0.1234
0.1234
1234
999
10.3333
10000000
1234567
12.3456
.1277
-.559

Actual Output

2bbbbbbbb
bbbbbbbb2
16****
bbb$10.20
$1,000.00
b1,000.00
bb1000.00
00000004.3
00056
2000.00bb
2,301
bbbbbS.9
66.00
$0.12
$0.1234
$0.
$0.1234
b$1,234
999bb
3333
10,000,000
1,234,560
12.3
0.13bb
bbbbbb-.56

87-1360

CONVERSIONS

Definition

Output
Conversions

Examples

87-1360

DATA/BASIC Elements

The same input and output conversions performed in
ENGLISH can be performed in DATA/BASIC. Input and
output conversions are performed by the ICONV and
OCONV intrinsic functions. The ICONV and OCONV
functions are explained in Chapter 5.

Output conversions, for the most part, convert
from some internal format or internally stored
data to an output format. Oate and time are
stored internally as integers and converted to
normal date and time strings by an output
conversion.

The format strings explained in the previous pages
are, themselves, output conversions. Therefore,
output conversions that are to be printed (with
the PRINT or CRT statements) may be executed as a
type of format string. The conversion expression
is used as the parameter of the format string.
For example:

PRINT OCONV(OATE(), '02/')

The above example can be output as a format
string:

PRINT OATE() '02/'

You may ask the question, "Why use the OCONV
function at all when a format string is so much
easier?" Use the OCONV function to perform an
output conversion when the result may have to be
further used in the program, stored, and/or output
in several places. Use a format string when you
simply want to print the conversion.

Additional examples of equivalent output
conversions are shown below.

ASC = "ABC123"
PRINT OCONV(ASC, "MX")

ASC = "ABCl123"
PRINT ASC "MX"

Both of the above examples will convert the ASCII
string "ABC123" to hexadecimal and print the value
414243313233.

2-27

DATA/BASIC Elements

CONVERSIONS

External to
Internal Date
Conversion

2-2.8

(Continued)

Conversion from external date format to internal
date format is an internal conversion normally
performed by the ICONV function. However, dates
may be stored in a file in external format and you
may have the need to convert to internal format as
an output function. For that, the DI conversion
is provided.

DI is a special case of date conversion. It
allows you to convert from external to internal
format as an output conversion, the inverse of the
normal D conversion.

Because DI is used as an output conversion, it may
also be specified as a type of DATA/BASIC format
string to convert a date to internal format.

All three of the following examples produce the
same result:

INPUT TODAY
CRT ICONV(TODAY, "D")

INPUT TODAY
CRT OCONV(TODAY,"DI")

INPUT TODAY
CRT TODAY "DI"

87-1360

87-1360

Overview
Dimensioned Arrays .
Dynamic Arrays . . .
Dynamic Arrays vs. Dimensioned
Dynamic Array Referencing

Extraction
Replacement
Insertion and Deletion

Chapter 3
DATA/BASIC Arrays

Arrays

3-3
3-3
3-5
3-7
3-9
3-10
3-12
3-15

3-1

Overview

DATA/BASIC Arrays

This chapter explains how dimensioned and dynamic
arrays operate and provides a comparison of both
kinds. It also explains how to extract, replace,
insert and delete dynamic array references.

DIMENSIONED ARRAYS

Definition

Vector

Matrix

A variable with more than one value associated
with it is called an array. Each value is
referred to as an element of the array, and the
elements are ordered.

Array A is a one-dimensional array (also called a
vector) .

Table 3-1. One-dimensional Array.

Array A

3 First element of A has value 3 .

8 Second element of A has value 8 .

-20.3 Third element of A has value -20.3.

ABC Fourth element of A has string value
ABC.

Array B is a two-dimensional array (also called a
matrix), which has both rows and columns.

Table 3-2. Two-dimensional Array.

Array B

Col. I Col. 2 Col. 3 Col. 4

Row 1 3 XYZ A -8.2

Row 2 8 3. I 500 .333

Row 3 2 -5 Ql23 84

87-1360 3-3

DATA/BASIC Arrays

DIMENSIONED ARRAYS (Continued)

Accessing
Elements

DIMENSION
Statement

3-4

Any array element can be accessed by specifying
its position in the array. For example, in the
first table, the first element of Array A has a
value of 3. Therefore A(1) = 3. The second
element of Array A (referred to as A(2)) has the
value 8, and so on.

For a two-dimensional array (or matrix), you must
specify both the row and column positions of the
element. Specify the row first, then the column.
For example, in Array B (shown above), element
B(1,1) contains the value 3, while element B(2,3)
contains the value 500.

Before an array can be used in a DATA/BASIC
program, it must be dimensioned via the DIMENSION
cr COMMON statement. (For information on how to
dimension an array, refer to the topic "DIMENSION"
in Chapter 4, "DATA/BASIC Statements".)

87-1360

DYNAMIC ARRAYS

Definition

DATA/BASIC Arrays

A dynamic array consists of one or more attributes
separated by attribute marks. An attribute mark
(AM) is shown here as an up arrow (A).

Attributes can consist of a number of values,
which are separated by value marks. A value mark
(VM) is represented by a right bracket (]).

A value may consist of a number of subvalues,
separated by subvalue marks. A subvalue mark
(SVM) is represented by a backslash (\).

The elements of a dynamic array can be added to or
deleted from the dynamic array without recompiling
the program, as long as the string does not exceed
31,743 characters (in 1Kbyte/frame systems).

Simple The following dynamic array contains four
Dynamic Array attributes.

Complex
Dynamic Array

Examples

87-1360

The following dynamic array is more complex.

This array contains the following attributes:

Q5, AA, 952]ABC]12345, A, B,
C]TEST\121\9\99.3]2, and 555

the following values:

952, ABC, 12345, C, TEST\121\9\99.3, and 2

and the following subvalues:

TEST, 121, 9, and 99.3

Array X = 123 A 456 A 789]ABC]DEF

In Array X, 123, 456, and 789]ABC]DEF are all
attributes. In addition, 789, ABC, and DEF are
values.

Array B = 1234567890

Array B contains a single attribute.

3-5

DATA/BASIC Arrays

DYNAMIC ARRAYS (Continued)

3-6

M = Q56~3.22]3.56\88\B]C~99

Dynamic array M contains three attributes (Q56,
3.22]3.56\88\B]C, and 99), three values (3.22,
3.56\88\B, and C), and three subvalues (3.56, 88,
and B).

DYNARRAY = A]B]C]D~E]F]G]HAI]J

The dynamic array called DYNARRAY contains the
attributes A]B]C]D, E]F]G]H, and I]J. It also
contains the following values: A, B, C, D, E, F,
G, H, I and J.

Note: In the above examples, the attribute mark
is represented by an up arrow (A). However, if
you were entering any of the examples in a
program, they would not compile as shown. You
would have to equate a symbol to the attribute
mark and concatenate the symbol into the string.
For example:

EQU AM TO CHAR(254)
DYNARRAY = "A]B]C]D":AM:"E]F]G]H":AM:"I]J"

87-1360

DATA/BASIC Arrays

DYNAMIC ARRAYS VS. DIMENSIONED ARRAYS

Introduction

Storage

Dynamic
Arrays

Dimensioned
Arrays

87-1360

DATA/BASIC lets you manipulate variables in the
form of dynamic arrays or as individual array
elements. This topic discusses the tradeoffs
involved in each format.

Dynamic arrays are stored in the following way:

ABCADEF]GHI]JKLAMNO\PQR\STU]VWXAYZ

Dimensioned arrays are stored as follows:

1
2
3
4

ABC
DEFJGHI]JKL
MNO\PQR\STU]VWX
YZ

Dynamic arrays are primarily useful in interfacing
to REALITY file items. By specifying a single
variable name, you can read or write an entire
item, or access individual items easily.

The functions described in the following topic,
"Dynamic Array Referencing" scan dynamic arrays,
looking for individual elements. This can
sometimes be inefficient, depending on the
application.

For instance, to extract attribute 10 from an
item, DATA/BASIC first scans over attributes 1
through 9. When replacing data in an item,
DATA/BASIC passes by all the data preceding the
replacement, copies in the new value and then
appends all the data that came after the
attribute. This continual scanning becomes
inefficient when you are accessing a large number
of elements or processing a large item.

In such cases, it is better to read the item into
a dimensioned array (using the MATREAD statement).
MAT READ places each attribute of the item into
separate variable locations that can be accessed
individually, without scanning the item. This is
particularly useful if several attributes need to
be changed, because you can modify attributes
without moving the rest of the item.

3-7

DATA/BASIC Arrays

DYNAMIC ARRAYS VS. DIMENSIONED ARRAYS (Continued)

Rules of
Usage

3-8

You can still use dynamic array references to
extract, delete, insert and replace attributes,
values and subvalues. You simply specify the
array subscript.

For example, if the item is stored as a dynamic
array, the expression ITEM<3,2,4> accesses the
fourth subvalue in the second value in the third
attribute. On the other hand, if the item is
stored as a dimensioned array, the expression
ITEM(3)<1,2,4> accesses the same element.

This method has its disadvantages too. Because
there is a separate descriptor for each cell in
the array, it uses more variable descriptor space.
It also uses more freespace, because each
attribute may have its own buffer in freespace.

In addition, items must be disassembled for a
MATREAD and reassembled with a MATWRITE, which
takes more time than a simple READ or WRITE.

Use the following rules as guidelines in
determining whether to use dynamic or dimensioned
arrays.

1.

2.

3.

4.

Use dynamic arrays only when dealing with
data read from or written to REALITY file
items. Use standard dimensioned arrays when
the need for an internal table arises.

If a value is to be used more than once,
assign it to a variable instead of performing
multiple extractions. Also, if the
application is to reference many values/sub­
values in an attribute, assign the attribute
to a variable and perform the extractions and
replacements on this smaller string (using an
attribute value of one) rather than
continually scanning the entire item.

Use dynamic arrays to extract several
attributes from the beginning of an item or
to replace four or five values in a large
item. However, use a dimensioned array to
construct new items or to access several
different attributes.

Use dimensioned arrays only where necessary,
because the object code required to reference
them is greater than for single variables.
However, avoid doubling the source code
simply to avoid using subscripted variables.

87-1360

DATA/BASIC Arrays

DYNAMIC ARRAY REFERENCING

Introduction

Syntax

Comments

Examples

87-1360

DATA/BASIC lets you reference any attribute, value
or subvalue of a dynamic array directly.

Note: Direct referencing makes the EXTRACT,
REPLACE, INSERT and DELETE functions
obsolete. However, they are maintained in
this document for compatibility.

expression<attribute {,value {,subvalue}}>

Expression specifies the dynamic array (usually a
variable). The following variables are called
positional expressions and identify the particular
element being referenced.

If both value and subvalue are omitted (or zero),
then the entire attribute is referenced.

If no subvalue is referenced (or if it is zero),
then the specified value is referenced.

If a subvalue is specified (and it's greater than
zero), then it is referenced.

Note: A dynamic array may not be specified in an
EQUATE statement.

ITEM<3>

References the third attribute in dynamic array
ITEM.

X=2; Y=5
A<X,Y>

References the fifth value in the second attribute
in dynamic array A.

DARRAY<I,J,K+2>

References the subvalue, specified by K+2, in the
J'th value in the I'th attribute in dynamic array
DARRAY.

3-9

DATA/BASIC Arrays

DYNAMIC ARRAY REFERENCING: EXTRACTION

Introduction

Rules of
Usage

Examples

3-10

An attribute, value or subvalue may be extracted
from a dynamic array by specifying a dynamic array
reference as an expression in any DATA/BASIC
statement.

Values other than nonzero positive integers are
not valid specifications for 'dynamic array
elements. They are converted according to the
rules below:

1. Nonnumeric expressions display a warning
message and default to zero.

2. Noninteger expressions truncate the decimal
value (e.g., 1.7 and 1.2 become 1).

3. All trailing zero-valued positional
expressions (except attribute) are ignored.

4. Any remaining zero-valued positional
expressions default to one.

5. Negative values return a null value.

6. If the positional expressions specify a
nonexistent position, or if the dynamic array
is initially null, a null value is returned.

QTY = ITEM<3>

Assigns the value of the third attribute in
dynamic array ITEM to variable QTY.

PRINT A<X,Y>

Prints the Y'th value in the X'th attribute in
dynamic array A.

PO.YEAR=ORDER<I,J,3> / 365

Assigns the value of the third subvalue in the
J'th value in the I'th attribute of dynamic array
ORDER, divided by 365, to variable PO. YEAR.

87-1360

DATA/BASIC Arrays

DYNAMIC ARRAY REFERENCING: EXTRACTION (Continued)

87-1360

Note: In the following examples dynamic array 5
has the value:

5="1\2\3]11\22]333"A\B\C]AA"

Original Intermediate
Expression Expression

5<0,0,0> 5<0> (R3)
5<1> (R4)

5<0,0,2> 5<1,1,2> (R4)

5<0,2,0> S<0,2> (R3)
S<1,2> (R4)

S<2,0,0> S<2> (R3)

5<"ABC"> S<O> (Rl)
S<1> (R4)

S<1.9> S<1> (R2)

S<1,-1> null (RS)

S<5> null (R6)

* NOTE:

*

Returns

1\2\3]11\22]333

2

11\22

A\B\C]AA

Error Message
1\2\3]11\22]333

1\2\3]11\22]333

null

null

In the above example the attribute mark is
represented by an up arrow ("). However, if you
were entering the example in a program, it would
not compile as shown. You would have to equate a
symbol to the attribute mark and concatenate the
symbol into the string. For example:

EQU AM TO CHAR(254)
S = 11\2\3]11\22]333":AM:"A\B\C]AA I

3-11

DATA/BASIC Arrays

DYNAMIC ARRAY REFERENCING: REPLACEMENT

Introduction

Rules of
Usage

An attribute, value or subvalue may be replaced in
a dynamic array by specifying a dynamic array
reference as the object (left-side) of an
assignment statement.

Values other than nonzero positive integers are
not valid specifications for -dynamic array
elements. They are converted according to the
rules below:

1. Nonnumeric expressions display a warning
message and default to zero.

2. Noninteger expressions truncate the decimal
value (e.g., 1.7 and 1.2 become 1).

3. All trailing zero-valued positional
expressions (except attribute) are ignored.

4. Any remaining zero-valued positional
expressions default to one.

5. The first occurrence of a negative value
remains negative and subsequent negative
values become one. (See rule 6.)

6. The single remaining negative value creates a
new position according to the following
scheme:

If the dynamic array is not null, then the
replacement value (preceded by a delimiter)
is added as a new attribute, value or
subvalue (depending on which position was
negative) at the end of the existing
specified item, attribute, or value
respectively. The remaining positional
expressions (if any) are treated as usual.
However, if the dynamic array is initially
null, the negative value is converted to 1
and Rule 7 is applied.

7. If the positional expressions specify a
nonexistent position, or if the dynamic array
is initially null, then nulls are created
where needed to put the replacement value in
the indicated position. A trailing delimiter
is not added.

3-12 87-1360

DATA/BASIC Arrays

DYNAMIC ARRAY REFERENCING: REPLACEMENT (Continued)

Examples

87-1360

A<X,Y>=PRICE

Replaces the Y'th value in the X'th attribute in
dynamic array A with the current value of PRICE.

ORDER<I,J,3> = YR*365

Replaces the third subvalue in the J'th value in
the I'th attribute in dynamic array ORDER with the
value of YR multiplied by 365.

IF PART<I,X+2> = 0 THEN PART<I,X+2> = 1

If the value represented by X+2 in attribute 1 of
dynamic array PART is zero it is replaced with 1.

Note: In the following examples, N, 8 and X have
the following values, and (Rn) represents
the corresponding rule that applies.

N="" (null string)
S="1\2\3]l1\22]333"A\B\C]AA" *
X="XXX"

Original
Expression

8<2,0>=X

8<0,2,0>=X

8<1,1.6>=X

8<"ABC">=X

8<-5>=X

8<-5,3,-2>=X

Intermediate Resulting String
Expression in First Variable

8<2> (R3) 1\2\3]11\22]333A XXX

8<0,2> (R3)
8<1,2> (R4) 1\2\3]XXX] 333 A A\B\C]AA

8<1,1> (R2) XXX] 11\22] 333"A\B\C]AA

8<0> (R1) Error Message
8<1> (R4) XXXAA\B\C]AA

8<-5> (R6) 1\2\3]11\22]333AA\B\C]AAAXXX

8<-5,3,1> (RS)
8<-5,3,1> (R6)
8<-5,3,1> (R7)1\2\3]11\22]333AA\B\C]AAA]]XXX

* See note on page 3-11.

3-13

DATA/BASIC Arrays

DYNAMIC ARRAY REFERENCING: REPLACEMENT (Continued)

3-14

Note: In the following examples, N, 5 and X have
the following values, and (Rn) represents
the corresponding rule that applies.

N="" (null string)
5="1\2\3]11\22]333"A\B\C]AA" *
X="XXX"

Original
Expression

5<0,-5,0>=X

5<-2,-2,3>=X

5<-2,3,2>=X

N<-2,-2,3>=X

Intermediate Resulting String
Expression in First Variable

5<0,-5> (R3)
5<1,-5> (R4)
5<1,-5> (R6) 1\2\3] 11\22]333]XXX"A\B\C]AA

5<-2,1,3> (RS)
5<-2,1,3> (R6)
5<-2,1,3> (R7) 1\2\3]11\22]333"A\B\C]AAA\\XXX

5<-2,3,2> (R6)
5<-2,3,2> (R7) 1\2\3]11\22]333A A\B\C]AA"JJ\XXX

N<-2,1,3> (RS) \\xxx

* See note on page 3-11.

87-1360

DATA/BASIC Arrays

DYNAMIC ARRAY REFERENCING: INSERTION AND DELETION

Insertion

Deletion

87-1360

An attribute, value or a subvalue may be inserted
into a dynamic array by specifying a dynamic array
reference as part of the DATA/BASIC INS statement.

The INS statement is explained in detail in
Chapter 4, "DATA/BASIC Statements".

An attribute, value or a subvalue may be deleted
from a dynamic array by specifying a dynamic array
reference as part of the DATA/BASIC DEL statement.

The DEL statement is explained in detail in
Chapter 4, "DATA/BASIC Statements".

3-15

87-1360

Chapter 4
DATA/BASIC Statements

Overview
General Statements . .
Assignment Statements
Branching
Looping
Subroutine Branching .
Interprogram Transfers . "
Program Termination
Miscellaneous Control Statements
Output Statements
Input Statements . .
Accessing SCREENPRO
Accessing PROC . . .
Accessing TCL
File 1/0 Statements
Tape 1/0 Statements
Setting Locks
Dynamic Arrays
Dimensioned Arrays ...
ABORT . . .
ASSIGN
BREAK
CALL
CASE .
CHAIN . . .
CLEAR
CLEARFILE
COMMON .
CRT
DATA.
DEBUG . . .
OEL
DELETE
DELETELIST
DIM
~CHO
END
ENTER . . .
EQU
FIND .
FINDSTR
FOOTING
FOR
GETLIST
GO • . • .
GOSUB ...
GROUPSTORE .
HEADING
IF (single-line) .
IF (multiline)
INCLUDE
INPUT

4-3
4-3
4-3
4-3
4-3
4-4
4-4
4-4
4-4
4-5
4-5
4-5
4-5
4-5
4-6
4-6
4-7
4-7
4-7
4-8
4-10
4-11
4-13
4-15
4-17
4-19
4-20
4-21
4-23
4-24
4-26
4-27
4-29
4-30
4-31
4-32
4-33
4-34
4-35
4-37
4-38
4-39
4-40
4-42
4-44
4-45
4-46
4-48
4-50
4-52
4-54
4-55

4-1

DATA/BASIC Statements

4-2

INPUT USING
INS
LOCATE.
LOCK
LOOP ..
MAT ...
MATBUILD
MATINPUT USING
MATPARSE
MAT READ
MATREADU
MATWRITE
MATWRITEU
NEXT ..
NULL ..
ON GOSUB
ON GOTO
OPEN ..
PAGE ..
PERFORM
PRECISION
PRINT
PRINT (Using Output Formatting)
PRINTER
PRINTERR .
PROCREAD .
PROCWRITE
PROMPT .
READ ..
READLIST
READ NEXT
READT
READU
READV
READVU
RELEASE
REM
RETURN .
REWIND .
RQM
SELECT(E)
SHARE
SLEEP
STOP .
SUB
UNLOCK
WE OF .
WRITE
WRITELIST
WRITET ..
WRITEU . .
WRITEV
WRITEVU

I· •

4-57
4-59
4-61
4-65
4-66
4-68
4-70
4-72
4-73
4-75
4-76
4-77
4-78
4-79
4-80
4-81
4-83
4-85
4-87
4-88
4-91
4-93
4-95
4-97
4-98
4-99
4-100
4-101
4-102
4-103
4-104
4-106
4-107
4-108
4-109
4-110
4-111
4-112
4-113
4-114
4-115
4-117
4-119
4-120
4-112
4-124
4-125
4-126
4-127
4-128
4-129
4-130
4-131

87-1360

Overview

General
Statements

Assignment
Statements

Branching

Looping

87-1360

DATA/BASIC Statements

This chapter contains a brief summary of the
DATA/BASIC statements, organized by function.
Following the summary is a complete description of
each statement in alphabetical order.

COMMON

DIMENSION

EQUATE

INCLUDE

PRECISION

REM

SHARE

CLEAR

MAT

CASE

IF

GO (GOTO)

ON GOTO

FOR

LOOP

NEXT

Passes values between programs and
controls allocation of variable
storage space.

Dimensions arrays.

Declares a symbol to be equivalent to
a variable or literal.

Stores large or commonly used sections
of code outside the source code item.

Sets the degree of precision to which
all values are calculated.

Indicates a comment.

Allows multiple programs to share a
single copy of constant data.

Initializes all program variables to
zero.

Assigns values to each element in an
array.

Allows conditional selection of a
sequence of statements.

Allows for conditional execution of a
sequence of DATA/BASIC statements.

Unconditionally transfers program
control to another statement in the
program.

Transfers program control to a
statement specified by the current
value of the given expression.

Begins a loop that is subsequently
terminated by a NEXT statement.

Constructs program loops, using WHILE
and UNTIL conditions.

Increments specified variable in a
FOR/NEXT loop.

4-3

DATA/BASIC Statements

Subroutine
Branching

Interprogram
Transfers

Program
Termination

CALL Transfers control to an external
subroutine.

GOSUB Transfers control to the subroutine
beginning with the specified label.

ON GOSUB Transfers control to an internal
subroutine determined by the current
value of a given expression.

RETURN Transfers control from a subroutine
back to the main program.

SUBROUTINE Identifies a DATA/BASIC program as an
external subroutine called by another
DATA/BASIC program.

CHAIN

ENTER

ABORT

END

STOP

Allows a DATA/BASIC program to exit to
TCL or to pass values to separately
compiled programs.

Transfers control to a cataloged
program.

Halts program execution, prints
optional message, and terminates
driving PROC.

Signifies the physical end of a
program.

Halts program execution.

Miscellaneous ASSIGN
Control

Modifies system elements retrieved
using the SYSTEM function.

Statements
BREAK

DEBUG

ECHO

NULL

PRINTERR

RQM

4-4

Enables/disables the BREAK key.

Passes control to the DATA/BASIC
symbolic debugger.

Controls echoing of input characters.

Specifies no operation.

Prints error messages stored in the
system ERRMSG file or in a user­
specified file.

Causes a program to sleep for a
specified period of time.

87-1360

Output
Statements

Input
Statements

Accessing
SCREENPRO

Accessing
PROC

Accessing
TCL

87-1360

SLEEP

CRT

FOOTING

HEADING

PAGE

PRINT

PRINTER

DATA

DATA/BASIC Statements

Same as RQM.

Outputs data to the CRT.

Causes the current output device to
page and prints the specified text at
the bottom of the page.

Causes the curr.ent output device to
page and prints the specified text at
the top of the page.

Advances the current output device to
the next page and prints the
heading/footing at the top/bottom of
the page.

Outputs data to the device selected by
the PRINTER statement.

Selects either the user's terminal or
the system printer for subsequent
program output.

Stores values for use by subsequent
requests for terminal input.

INPUT Prompts the user for input.

GROUPSTORE Inserts a string of elements into
another string.

PROMPT Selects the character used to prompt
for user input.

INPUT
USING

MATINPUT
USING

PROCREAD

PROCWRITE

PERFORM

Solicits input data (in the form of a
dynamic array) from the SCREENPRO
Screen Processor.

Solicits input data (in the form of a
dimensioned array) from the SCREENPRO
Screen Processor.

Reads data from the PROC primary input
buffer.

Writes data to the PROC primary input
buffer.

Lets you use TCL verbs within a
DATA/BASIC program.

4-5

DATA/BASIC Statements

File I/O
Statements

Tape I/O
Statements

4-6

CLEARFILE Clears out the data or dictionary
section of a specified file.

DELETE Deletes a file item.

DELETELIST Deletes a previously saved list from
the POINTER-FILE.

GETLIST Produces a list of item-ids for a
subsequent READNEXT statement.

MATREAD Reads a file item and assigns each
attribute to consecutive elements of a
dimensioned array.

MATWRITE Writes a dimensioned array to a file
item.

OPEN Selects a file for subsequent input,
output or update.

READ Reads a file item and assigns its
value, as a dynamic array, to a
variable.

READLIST Reads a list from the POINTER-FILE and
assigns it to a variable for program
manipulation.

READNEXT Reads the next item-id from the select
list.

READV Reads an attribute value from an item
and assigns its string value to a
specified variable.

SELECT Builds a list of item-ids for the
READNEXT statement.

WRITE Updates a file item.

WRITELIST Writes a string to the POINTER-FILE as
a saved list.

WRITEV Updates an attribute value in a file.

READT

REWIND

WEOF

Reads the next record from a magnetic
tape unit.

Rewinds the magnetic tape unit to the
Beginning-Of-Tape mark (BOT).

Writes an End-Of-File mark (EOF) to
tape.

87-1360

Setting
Locks

Dynamic
Arrays

Dimensioned
Arrays

87-1360

WRITET

LOCK

MATREADU

MATWRITEU

READU

READVU

RELEASE

UNLOCK

WRITEU

WRITEVU

DEL

FIND

FINDSTR

INS

LOCATE

MATBUILD

MATPARSE

DATA/BASIC Statements

Writes a record to tape.

Sets an execution lock, so multiple
programs cannot update the same file
simultaneously.

Locks a specific item in a file prior
to updating it.

Writes an array to a file item and, if
it was locked, leaves the item locked.

Locks a specific item in a file prior
to updating it.

Locks a specific item in a file prior
to updating it.

Unlocks items that have been locked
for update.

Resets execution locks.

Updates a file item and leaves the
item locked.

Updates an attribute value in a file
and leaves the item locked.

Deletes an attribute, value or
subvalue from a dynamic array.

Finds the position of a given
attribute, value or subvalue in a
dynamic array.

Locates a substring within a dynamic
array element.

Inserts an attribute, value or
subvalue into a dynamic array.

Finds the position of an attribute,
value or subvalue within a dynamic
array.

Builds a string variable from a
dimensioned array.

Assigns the elements of a string
variable to the elements of a
dimensioned array.

4-7

DATA/BASIC Statements

ABORT

Purpose

Syntax

4-8

ABORT halts program execution, prints an optional
message, and terminates a driving PROC.

ABORT {message-id}
ABORT {expression, ... }

ABORT functions much the same as the STOP
statement except it also terminates a driving PROC
and prints an optional termination message.

Message-id contains the item-id of the item in the
system message file (ERRMSG) containing the
message. Message-id must be numeric.

Expression can be a variable, function, arithmetic
statement or literal string that can be printed as
part of the message.

The format of messages in the ERRMSG file are
controlled with the following codes:

Code

C
H literal string
L
L(n)

E {literal string}

A
A(n)

R(n)

S(n)

T
o

Meaning

Clear screen.
Print literal string.
Output line feed/return.
Output n line feeds/ .
returns.
Print message item-id
surrounded by brackets,
followed by optional
literal string.
Output next parameter.
Output next parameter left­
justified in a field of n
blanks.
Output next parameter
right-justified in a field
of n blanks.
Output n spaces, counting
from the beginning of the
line.
Print system time.
Print system date.

Notes: Line feed/carriage returns are not
processed automatically, so they must be
stated explicitly with the ERRMSG item.

It is not a good practice to use messages
supplied with the system, because they may
change with different software releases.

87-1360

DATA/BASIC Statements

ABORT (Continued)

Examples

87-1360

ERR = "CANNOT OPEN FILE"
OPEN "TESTFILE" TO "TEST" ...

ELSE ABORT ERR

If TESTFILE cannot be opened, the program displays
the message "ERRMSG [CANNOT OPEN FILE]" and
terminates.

IF COUNT < 10 THEN GOTO 100
PRINT "PROGRAM OVER"
ABORT

If COUNT = 10, the program terminates with the
message "PROGRAM OVER". In this example, STOP
would be a better choice of statements than ABORT.

Item '300' in 'ERRMSG' file:

E PROGRAM TERMINATED.

DATA/BASIC example:

IF COUNT < 10 THEN GOTO 100
ABORT 300

If count = 10, the program terminates with the
message "[300] PROGRAM TERMINATED".

4-9

DATA/BASIC Statements

ASSIGN

Purpose

Syntax

Comments

Examples

4-10

ASSIGN changes system elements whose values can be
retrieved using the SYSTEM function.

ASSIGN value TO SYSTEM(element)

The system elements which may be changed are
listed below.

2 Current page width.

3 Current page length.

5 Current page number.

7 Terminal type.

30 Pagination in effect.

35 Language in use.

37 Thousands separator in use.

38 Decimal separator in use.

39 Money sign in use.

42 Asynchronous Comrn Port Status (bit 0 only)

ASSIGN 12 TO SYSTEM(5)

Assigns the value 12 to system element 5, the
current page number.

ASSIGN 66 TO SYSTEM(2)

Assigns the value 66 to system element 2, the
current page width.

ASSIGN 54 TO SYSTEM(3)

Changes the value of the current page length
(system element 3) to 54.

ASSIGN 1 TO SYSTEM(42)

Raises DTR.

87-1360

BREAK

Purpose

Syntax

Comments

87-1360

DATA/BASIC Statements

The BREAK statements enable or disable the BREAK
key on the terminal.

BREAK {KEY} OFF
BREAK {KEY} ON
BREAK expression

BREAK OFF disables the BREAK key on the terminal.
This can be used to prevent a user from stopping
program execution during a critical process, such
as a file update.

BREAK ON restores normal operation to the BREAK
key (i.e., pressing BREAK causes a "break" to the
DATA/BASIC symbolic debugger). Normal operation
is also restored when the program ends.

BREAK expression must evaluate to a numeric. If
it evaluates to zero, the BREAK key is disabled.
If it evaluates to a nonzero value, the BREAK key
is enabled.

The current state of the BREAK key can be
determined using the SYSTEM(23) function.

Note: These statements should only be used in a
debugged program. If a program gets into
an endless loop while the BREAK key is
disabled, you can't stop the process on the
terminal on which it was started.

If this happens, you can stop the process
from another terminal (logged on to an
account with SYS2 privileges) with the
following TCL verb:

ENABLE-BREAK-KEY (n

The value n is the number of the
communication line to which the disabled
terminal is attached.

4-11

DATA/BASIC Statements

BREAK (Continued)

Examples

4-12

BREAK KEY OFF
WRITE ITEM ON FILE,A

Disables the BREAK key on the terminal while ITEM
is being written to a file. This guarantees that
FILE will be updated, even if the BREAK key is
pressed.

BREAK ON

Re-enables the BREAK key.

BREAK X+5

Enables the BREAK key if X+5 is nonzero,
otherwise, BREAK key is disabled.

:ENABLE-BREAK-KEY 6 <RETURN>

Enables the BREAK key on a terminal attached to
line 6.

87-1360

CASE

Purpose

Syntax

Conunents

Examples

87-1360

DATA/BASIC Statements

The CASE statement allows conditional selection of
a sequence of statements.

BEGIN CASE
CASE expression
statement(s)
CASE expression
statement(s)

END CASE

If the value of the first expression is true
(nonzero), then the statement(s) that immediately
follow are executed, and control passes to the
next sequential statement following the entire
CASE statement sequence.

If the first expression is false (zero), then
control passes to the next test expression, and so
on.

Programs containing more END CASE statements than
BEGIN CASE statements will not compile
successfully.

Note: A test expression of 1 means always true.

BEGIN CASE
CASE A < 5
PRINT 'A IS LESS THAN 5'
CASE A < 10
PRINT 'A IS GREATER THAN OR EQUAL TO 5 AND ...

LESS THAN 10'
CASE 1
PRINT 'A IS GREATER THAN OR EQUAL TO 10'

END CASE

If A<5, then the first PRINT statement is
executed. If 5<A<10, the second PRINT statement
is executed. Otherwise, the third PRINT statement
is executed.

4-15

DATA/BASIC Statements

CASE (Continued)

4-16

BEGIN CASE
CASE Y=B
Y=Y+1

END CASE

If Y is equal to B, add 1 to the value Y.

BEGIN CASE
CASE A=O;
CASE A<O;
CASE 1;

END CASE

GOTO 10
GOTO 20
GOTO 30

Control branches to the statement labeled 10 if A
is zero, to 20 is A is negative or to 30 if A is
greater than zero.

BEGIN CASE
CASE ST MATCHES "lA"

MAT LET=l
CASE ST MATCHES "IN"

SGL=l; A.l(I)=ST
CASE ST MATCHES "2N"

DBL=l; A.2(J)=ST
CASE ST MATCHES "3N"

GOSUB 103
END CASE

If ST is one letter, the value 1 is assigned to
all LET elements, and the case ends. If ST is one
number, then 1 is assigned to SGL, ST is stored at
element A.1(I), and the case ends. If ST is two
numbers, 1 is assigned to DBL, ST is stored at
A.2(J), and the case ends. If ST is three
numbers, subroutine 103 is executed. If none of
the cases is true, control passes to the statement
following END CASE.

87-1360

CHAIN

Purpose

Syntax

Comments

87-1360

DATA/BASIC Statements

The CHAIN statement allows a DATA/BASIC program to
exit to any TCL command or to pass values to
separately compiled programs.

CHAIN expression

Expression may contain any.valid verb or PROC name
in the users' M/D.

The CHAIN statement allows values to be passed to
the specified program via the COMMON statement.
Consider the following two programs:

Program ABC in File BP

COMMON A,B(2)
A=500
B(1)=1;B(2)=2
CHAIN "RUN BP XYZ (I)"
END

Program XYZ in File BP

COMMON J(2),K
PRINT J(1),J(2),K
END

Program ABC causes program XYZ to be executed.
The I option in the CHAIN statement specifies that
the data area is not to be reinitialized, allowing
program ABC to pass the values 500, 1 and 2 to
program XYZ. Program XYZ prints the values 500, 1
and 2.

All COMMON variables form a long vector in row
major order, and, on a CHAIN, are assigned left to
right to the CHAINed program's COMMON variables.

Notes: Control is never returned to the
DATA/BASIC program originally executing
the CHAIN statement.

You may CHAIN to a program that calls a
subroutine, but it is not advisable to
CHAIN from a subroutine.

When CHAINING to a PROC, the con·tents of
the primary input buffer are replaced by
the value of the CHAIN expression, thereby
destroying the current contents of the
buffer.

4-17

DATA/BASIC Statements

CHAIN (Continued)

Examples

4-18

CHAIN "RUN FNI LAX (I)"

Executes program LAX in file FNI. The I option
specifies that the data area is not reinitialized
(i.e., the program executing the CHAIN statement
will pass COMMON values to program LAX).

CHAIN "LISTU"

Executes the LISTU SYSPROG PROC.

X = "LIST INV"
CHAIN X

Executes the ENGLISH verb LIST.

87-1360

CLEAR

Purpose

Syntax

Comments

Example

B7-1360

DATA/BASIC Statements

CLEAR initializes all program variables to zero.

CLEAR

The CLEAR statement may be used at the beginning
of a program to initialize all possible variables
or at any point within a program to reinitialize
variables.

You can also reinitialize file variables with
CLEAR, but it is a time-consuming process and
therefore is not recommended.

Programs should not access a variable until a
value has been assigned to it.

x = 5
Y = Y+l

CLEAR

Reinitializes all variables to zero.

4-19

DATA/BASIC Statements

CLEARFILE

Purpose

Syntax

Comments

Examples

4-20

CLEARFILE clears out the dictionary or data
section of a specified file.

CLEARFILE {file-variable}

When a CLEARFILE statement is executed, the
dictionary or data section of the file which was
previously assigned to the specified file-variable
(via an OPEN statement) is emptied (i.e., all the
items in the file are deleted).

If a file-variable is not specified, the internal
default file-variable is used (i.e., the file most
recently opened without a file-variable).

If the specified file has not been opened prior to
the execution of the CLEARFILE statement, the
program aborts with an error message.

The OL/IO item is not deleted if the dictionary is
being cleared. The user's MID and the SYSTEM
dictionary are protected against being cleared.

OPEN 'OICT' 'INV'
OPEN OICT INV";

OPEN 'AFILE' TO X
CLEARFILE O. INV
CLEARFILE X

TO O. INV ELSE PRINT "CANNOT ...
STOP
ELSE PRINT "CANNOT OPEN"; STOP

Clears the dictionary section of the file called
INV and the data section of AFILE.

OPEN 'FNl' ELSE PRINT "NO FNl"; STOP
READ I FROM 'II' ELSE STOP
CLEARFILE

Opens the data section of file FNl, reads item II
and assigns a value to variable I, and clears the
data section of FNI.

OPEN' ','ABC' ELSE PRINT 'NO FILE'; STOP
REAOV Q FROM 'IB3', 5 ELSE STOP
IF Q = 'TEST' THEN CLEARFILE

Clears the data section of file ABC if the fifth
attribute of the item named IB3 contains the
string value 'TEST'.

87-1360

COMMON

Purpose

Syntax

Conunents

DATA/BASIC Statements

The COMMON statement is used for passing values
between programs. It can also be used to control
the order in which space for the storage of
variables is allocated.

COMMON variable {,variable} ...

Variables may be simple, dimensioned or file
variables. Arrays included in a COMMON statement
are specified by declaring the dimensions (in
parenthesis) immediately following the array name.
If it is part of the COMMON statement, the array
should not be declared in any DIMENSION statement.

The COMMON statement can be used to pass variables
among CHAINed programs, but the I option on the
RUN verb must be used to inhibit reinitialization.
This guarantees that all COMMON variables refer to
the same values in different called programs.
There is a one-to-one correspondence between the
variables listed in the COMMON statement.

Normally, variables are allocated space in the
order in which they appear in the program, with
all simple variables allocated space before array
variables. COMMON forces variables to be
allocated space in the order in which they appear
in the statement. COMMON must appear before any
of the variables are used in the program.

All. other variables in the program which do not
appear in a COMMON statement are allocated space
in the normal manner.

COMMON variables may not appear as symbols in an
EQUATE statement and EQUATE symbols may not appear
in COMMON statements. However, you may EQUATE a
symbol to a COMMON variable.

Variable names may not be any DATA/BASIC reserved
word.

Note: Prior to the 3.0 release, you could
dimension simple variables with (1) or
(1,1). This method can no longer be used.
CHAINed programs must now use the COMMON
statement to replace the DIMENSION
statements, and (1) or (1,1) should be
omitted.

87-1360 4-21

DATA/BASIC Statements

COMMON (Continued)

Examples

4-22

Use of the COMMON statement in main programs and
subroutines is recommended over passing values in
argument lists because of considerable speed
advantages.

COMMON variables may also be used in external
subroutines.

COMMON A,B,C(lO)
COMMON X,y,Z(lO)

These statements, contained in different programs,
cause the variables A and X, Band Y and the
arrays C and Z to share the same locations.

Item 'PGM1' in File BP

COMMON A,B(3)
A=2
FOR I = 1 TO 3
B(I)=I*I
NEXT I
CHAIN "RUN BP PGM2 (I)"
END

Item 'PGM2' in File BP

COMMON X,Y(3)
FOR I = 1 TO 3
PRINT X,X*Y(I)
NEXT I
END

The first program declares variables A and B to be
COMMON variables, and dimensions array B to three
elements. The CHAIN statement exits to execute
PGM2 without reinitialization.

The second program associates X and Y to A and B
above and dimensions Y as an array with three
elements.

87-1360

CRT

Purpose

Syntax

Connnents

Examples

81-1360

DATA/BASIC Statements

The CRT statement outputs data to the CRT.

CRT {print-list}

Print-list may consist of a single expression or a
series of expressions, separated by commas or
colons (denoting output formatting).

The expressions may be any legal DATA/BASIC
statement.

The CRT statement is functionally equivalent to
the PRINT statement, except that the CRT statement
converts all system delimiters to printable
characters. The CRT statement is not affected by
the PRINTER ON/OFF statements.

Output formating, format strings, direct cursor
control, and video effects operate the same with
the CRT statement as with the PRINT statement.

CRT 5*(X+Y)

Displays the current value of the expression
5*(X+Y).

CRT

Displays a blank line.

A = 728
B = 4
CRT A/B,A+B,A,B

Displays the values 182 (A/B), 732 (A+B) , 728 and
4.

4-23

DATA/BASIC Statements

DATA

Purpose

Syntax

Comments

4-24

The DATA statement stores values for use by
subsequent requests for terminal input.

DATA expression{,expression ... }

Each expression is queued as one line of input.
These expressions satisfy subsequent requests for
input on a first-in-first-out basis.

The DATA statement stores stacked input for use by
subsequent INPUT statements.

The DATA statement can store stacked input for
TCL, ENGLISH verbs or PROCs, when used in
conjunction with a CHAIN or PERFORM statement.
(Refer to the CHAIN statement and the PERFORM
statement for further information.)

DATA can also be used to feed to input requests of
other programs that are executed via the CHAIN or
ENTER statements. For example:

DATA 'RUN BP PROG2', REF.DATE
CHAIN 'SSELECT INV WITH DATE < '" :REF.DATE: ...

'" BY DATE'

This example exits from a DATA/BASIC program, sort
selects a file and begins execution of a second
program. The DATA statement stacks two values
(RUN BP PROG2 and REF.DATE) to be used to feed
subsequent requests for terminal input. When the
ENGLISH processor has selected the items, the
prompt that follows a SELECT statement will
receive RUN BP PROG2 as input. The INPUT
statement contained in PROG2 will receive the
value REF.DATE.

Note: A DATA statement must be processed before
the CHAIN statement.

If a variable name appears in a DATA statement,
the stacked value is the contents of the variable
at the time the DATA statement is executed. For
example:

X=3
DATA X
X=4
CHAIN "RUN BP PGM"

The stacked value is three, because that is the
value of X at the time the DATA statement is
executed.

87-1360

DATA/BASIC Statements

DATA (Continued)

Examples

87-1360

DATA X,Y,3

CHAIN "RUN BP CALC"

Stacks values X, Y and 3 for subsequent requests
for input. If CALC has three input requests, they
will be satisfied by the values of X, Y and 3.

DATA 'SELECT INV WITH DATE = It, :D: ,It,
DATA "RUN PROGRAMS ONE", D

ENTER SPEC. LIS'll

Stacks the ENGLISH SELECT sentence. Stacks the
string RUN PROGRAMS ONE and the value of D. Exits
to execute the cataloged program SPEC.LIST.

NUMBER=12
DATA NUMBER

CHAIN "CHECK"

Stacks the present value of NUMBER for subsequent
input request. Exits to run the PROC CHECK, which
uses the value of NUMBER for input.

4-25

DATA/BASIC Statements

DEBUG

Purpose

Syntax

Example

4-26

DEBUG passes control to the DATA/BASIC symbolic
debugger. (For more information on the debugger,
refer to Chapter 7.)

DEBUG

DEBUG

Enters the system debugger.

87-1360

DEL

Purpose

Syntax

Comments

Examples

87-1360

DATA/BASIC Statements

The DEL statement deletes an attribute, value or
subvalue from a dynamic array using a dynamic
array reference. (Use of DEL obsoletes the DELETE
intrinsic function.)

DEL dynamic-array-reference

Dynamic-array-reference specifies the dynamic
array and the position of the value in the array
to be deleted. Whether an attribute, value or
subvalue is deleted depends on the value of the
third and fourth expressions in the dynamic-array­
reference, if present.

The format of dynamic-array-reference is
array<a,v,s> where array is the dynamic array, a
is the attribute, v is the value and s is the
subvalue.

In deletions, values other than positive integers
are illogical dynamic array indices. Invalid and
illogical indices are converted as follows:

1. Nonnumeric expressions print a warning message
and default to zero.

2. Noninteger expressions truncate the decimal
value (i.e., 1.7 and 1.2 become 1).

3. All trailing zero-valued positional expres­
sions (except attr#-expression) are ignored.

4. Any remaining zero-valued positional
expressions are treated as ones.

5. Negative values cause the statement to have no
effect.

6. If the positional expressions specify a
nonexistent position or the dynamic array is
initially null, the statement has no effect.

7. If you try to delete the first attribute
(value or subvalue) of an item that has no
attribute marks, the item is made null
instead. The trailing delimiter, if any, is
removed.

DEL ITEM<3>

Deletes the third attribute in the dynamic array
ITEM.

4-27

DATA/BASIC Statements

DEL (Continued)

4-28

DEL A<X,Y>

Deletes the Y'th value in the X'th attribute in
dynamic array A.

DEL ORDER<I,J,3>

Deletes the third subvalue in the value specified
by J in attribute indicated by I.

For the following examples:

S = "1 \2\3111 \22]333 "XXX"A \B\C 1AA"

DEL<I,2.4>

2.4 is truncated to 2 and the result is
1 \ 2 \ 3] 333" XXX A A \ B \ C] AA

DEL S<I,2,5>

Specifies a nonexistent position, so the statement
is ignored and S remains unchanged.

DEL S<2,1>

Because attribute 2 (XXX) has no value or subvalue
marks, attribute 2 is made null, and the result is
1\2\3]11\22]333""A\B\C]AA.

DEL S<3,0,0>

The third attribute is ignored, and the result is
1\2\3]11\22]333"XXX.

87-1360

DELETE

Purpose

Syntax

Comments

Examples

87-1360

DATA/BASIC Statements

The DELETE statement deletes a file item.

DELETE {file-variable,}item-id-expression

Item-id-expression specifies the item to be
deleted. File-variable specifies the file
(previously assigned to file-variable via an OPEN
statement) which contains the item to be deleted.
If file-variable is not specified, then the
internal default file-variable (i.e., the file
most recently opened without a file-variable) is
used.

If the item-id specified in the DELETE statement
does not exist, no action is taken.

If the specified file has not been opened prior to
the execution of the DELETE statement, the program
aborts with an error message.

DELETE X,"XYZ"

Deletes item XYZ in the file opened and assigned
to variable X.

Q="JOB"
DELETE Q

Deletes item JOB in a file opened without a file
variable.

4-29

DATA/BASIC Statements

DELETELIST

Purpose

Syntax

Comments

Examples

4-30

DELETELIST deletes a previously saved list from
the POINTER-FILE.

DELETELIST item-id {account-name}

Item-id is the item-id of the list to be deleted.

The list may have been saved by a SAVE-LIST, EDIT­
LIST or FORM-LIST command executed at TCL, or from
a WRITELIST statement executed in a DATA/BASIC
program.

To delete lists accessed from another account,
include the account-name after the item-id.

DELETELIST 'ITEMS'

Deletes the list ITEMS (saved from your account)
from the POINTER-FILE.

NAME = "ITEMS SYSPROG"
DELETELIST NAME

Deletes the list ITEMS (saved from the SYSPROG
account) from the POINTER-FILE.

87-1360

DIM

Purpose

Syntax

Conunents

Examples

87-1360

DATA/BASIC Statements

The DIM (or DIMENSION) statement dimensions arrays
so they can be used in a DATA/BASIC program.

DIM{ENSION} variable(dimensions)
{,variable(dimensions) ... }

A variable represents the name of the array, while
the dimensions indicate the size of the array.

An array can be one-dimensional, also called a
vector, or two-dimensional, also called a matrix.
(For more information on arrays, refer to Chapter
3, "DATA/BASIC Arrays".)

The maximum dimensions of an array must be
specified with a DIMENSION or COMMON statement.
The dimensions are declared with constant whole
numbers greater than one, separated by commas.
DIMENSION (or COMMON) statements must precede any
array references and are usually placed at the
beginning of the program.

Note: Arrays only need to be dimensioned once
throughout the entire program.

Do not use any DATA/BASIC reserved words or
intrinsic functions as array names.

Several arrays can be dimensioned with a single
DIMENSION statement. For example:

DIMENSION Al(10,5), X(50)

This example declares Array Al as a 10 by 5 matrix
and declares Array X as a 50-element vector.

DIMENSION MATRIX(10,12)

Specifies a 10 by 12 matrix called MATRIX.

DIM Q(10), R(10), S(10)

Specifies 3 vectors named Q, Rand S, each of
which contains 10 elements.

4-31

DATA/BASIC Statements

ECHO

Purpose

Syntax

Comments

Examples

4-32

The ECHO statement controls the echoing of input
characters.

ECHO ON
ECHO OFF
ECHO expression

ECHO ON enables the echoing of input characters to
the terminal, while ECHO OFF suppresses echoing of
input characters.

If you use ECHO expression, expression must
evaluate to a numeric. If it evaluates to zero,
echoing is disabled (same as ECHO OFF). If
expression evaluates to a nonzero, echoing is
enabled (ECHO ON).

The current state of the ECHO feature may be
determined using the SYSTEM(24) function.

ECHO replaces the user exit (USOEO) for
controlling the echoing of input characters.

ECHO ON
INPUT X

Echoes the value of X to the terminal.

ECHO OFF
INPUT Y

Suppresses display of the value of Y on the
terminal.

A = 35
B = 42
ECHO A+B

Enables echoing of characters, because the value
of expression A+B evaluates to a nonzero.

87-1360

END

Purpose

Syntax

COI1D1lents

Examples

DATA/BASIC Statements

The END statement specifies the physical end of a
DATA/BASIC program.

END

END must appear as the last statement in a
DATA/BASIC program. .

END is also used to specify the physical end of
sequences of statements within the IF statement
and within certain DATA/BASIC I/O statements.

For every multiline THEN and ELSE statement, there
must be a corresponding END statement. If there
are not enough END statements, the following error
displays:

[BIOI] MISSING "END", "NEXT", "WHILE", "UNTIL", "REPEAT" OR
"ELSE" ; CCJ.1PIIATION ABORTED, 00 OBJECT CODE PRODUCED.

If there are too many END statements, the program
may compile successfully, but not all of the
program statements may get compiled. You should
verify that the line number indicated in the
COMPILATION COMPLETE message matches the number of
lines in your program.

A=l
B=2
C=A+B

END

END signifies the physical end of this program.

IF A>B THEN
PRINT "A GT B"
STOP

END ELSE
PRINT liB LE A"

END
END

The first END statement terminates the THEN
clause. The second END statement terminates the
ELSE clause. The final END statement terminates
the program.

87-1360 4-33

DATA/BASIC Statements

ENTER

Purpose

Syntax

Connnents

Examples

4-34

ENTER lets you transfer control to a cataloged
program.

ENTER item-id
ENTER @variable

Both item-id and variable represent the name of a
cataloged program.

ENTER transfers control to a DATA/BASIC program
that has already been compiled and cataloged. The
program executing the ENTER statement must be
cataloged also.

All variables to be passed between programs must
be declared in a COMMON declaration in all
programs involved. All other variables are
initialized when the program is entered.

You may ENTER a program that calls a subroutine,
but you may not ENTER a program from a subroutine
or invoke a subroutine with the ENTER statement.

ENTER works faster than the CHAIN statement.

ENTER PGMI

Executes cataloged program PGMI. Any COMMON
variables are passed to PGMI.

1=2
PROGRAM="PGM":I
ENTER @PROGRAM

Executes PGM2 and passes any COMMON variables to
PGM2.

87-1360

EQU

Purpose

Syntax

Comments

DATA/BASIC Statements

The EQU (or EQUATE) statement declares a symbol to
be equivalent to a variable or literal.

EQU{ATE} symbol TO expression {,symbol TO
expression ... }

The symbol is formed like a. variable, but there is
no storage allocated for it. Symbol cannot be a
DATA/BASIC reserved word.

Expression may be a number, literal string,
character, simple variable, array element or the
CHAR intrinsic function. If expression is a
simple variable, it implies that the two variable
names are equivalent and can be used inter­
changeably.

There is an advantage to equating a symbol name to
a number, literal string or character, rather than
assigning it to a variable. This way, the
immediate value is compiled into the object text,
rather than accessing a variable location each
time the program is run.

The advantage of equating a symbol name to an
array name is that the computation of the array's
address is done once at compile time, rather than
each time the array element is referenced at run
time. Giving names to array elements also makes
the program more readable. For example:

Example 1

EQUATE QTY TO ITEM(3)
EQUATE PRICE TO ITEM(4)
VALUE = QTY * PRICE
PRINT VALUE

Example 2

VALUE = ITEM(3) * ITEM(4)
PRINT VALUE

The first example, though slightly longer, is more
readable and operates faster than the second.

The EQUATE statement must appear before the symbol
is used in the program.

COMMON variables may not appear as symbols in the
EQUATE statement, and EQUATE symbols may not
appear in COMMON statements. However, you may
equate a symbol to a COMMON variable.

87-1360 4-35

DATA/BASIC Statements

EQU (Continued)

Examples

4-36

EQUATE X TO Y

Equates symbol X to variable Y, so they may be
used interchangeably within the program.

EQUATE PI TO 3.1416

Assembles symbol PI as 3.1416 at compile time.

EQU STARS TO "*****"

Equates symbol STARS to a string value at compile
time.

EQUATE AM TO CHAR(254)

Equates symbol AM to CHAR(254).

EQU PART# TO ITEM(3)

Equates PART# to an array element.

COMMON A
EQUATE AA TO A

Equates symbol AA to COMMON variable A.

87-1360

FIND

Purpose

Syntax

Comments

Examples

87-1360

DATA/BASIC Statements

The FIND statement finds the position of a given
attribute, value or subvalue in a dynamic array.

FIND element IN dynamic{,occur} SETTING a{,v{,s}}
THEN/ELSE

Occur specifies the number,of the occurrence of
the element being searched for in the dynamic
array. If not specified, it defaults to 1. The
values a, v and s specify the attribute, value and
subvalue where the element is found.

The FIND statement works the same way as the
LOCATE statement, except it does not require a
specific format for the dynamic variable.

FIND returns the attribute and, if specified, the
value and subvalue in which the element is found.

DYNARR = "A"B"C"D"E"F"G"A"B"C"
FIND "A" IN DYNARR,2 SETTING X ELSE ...

PRINT "NOT FOUND"; STOP

Finds the second occurrence of the element A in
dynamic array DYNARR. Sets X to the value
indicating the position of that attribute.

ITEM = "24"34]28]31"29]22]21"
X=29
FIND X IN ITEM,1 SETTING A,B ELSE

PRINT "NOT FOUND"; STOP
PRINT A,B

Finds the multivalue equal to 29 in attribute A,
value B and prints A and B. In this example, A=3
and B=1.

ARR = "44" 8 8 " 6] 2]7 \ 3 \ 2 " 8 " 9 9 "
FIND 3 IN ARR,1 SETTING A,B,C ELSE ...

PRINT "CAN'T FIND"; STOP
PRINT A,B,C

Finds attribute 3 in attribute 3, value 3,
subvalue 2 of dynamic array ARR and prints the
values of A, Band C (3, 3 and 2).

4-37

DATA/BASIC Statements

FINDSTR

Purpose

Syntax

Comments

Examples

.-;ill ;1 i ~7'

FINDSTR locates a substring within a dynamic array
element.

FINDSTR substr IN dynamic{,occur} SETTING
a{,v,{s}} THEN/ELSE

Substr is the substring to search for within an
element in the dynamic array.

Dynamic is the dynamic array in which to search.

Occur is the occurrence of substring to search
for. If not specified, it defaults to 1.

The values a, v and s are the attribute, value and
subvalue where the element is found. If the ELSE
clause is taken, these variables do not change.

ARRAYX = "ALABAMAACALIFORNIA"MINNESOTA" *
FINDSTR "CA" IN ARRAYX,1 SETTING Y ...

ELSE PRINT "NO 'CA'''; STOP

Finds the attribute containing substring value CA
in dynamic array ARRAYX. Sets Y to the value
indicating the position of that attribute. Prints
error message if not found.

OPEN "FILEl" TO FILE ELSE PRINT "CANNOT OPEN";G 10
READ NUM FROM FIL,"I" ELSE PRINT "CAN'T READ";G 20
FINDSTR 33 IN NUM,1 SETTING K

ELSE PRINT "NOT FOUND"; STOP
PRINT K

Searches for substring 33 in NUM, item 1 and
prints a number representing the location in array
NUM where 33 occurs.

* Attribute marks are shown in example for
illustration. Please refer to note on Page
3-6.

4-38 87-1360

FOOTING

Purpose

Syntax

Connnents

Example

87-1360

DATA/BASIC Statements

The FOOTING statement causes the current output
devic~ to page and prints the specified text at
the bottom of the page.

FOOTING "expression"

Expression is the string to be printed at the
bottom of each page.

The page size is determined by the most recent
TERM command executed at TCL. If the footing is
longer than the TERM line length, the footing
wraps around to the next line.

Special footing control characters may be used as
part of the FOOTING statement. They are:

'C{n} ,

'D' or
'T' or
'L' or
'P' or
'PP' or

'N'
, I

~\
]

A A

Center line (in field of n
characters) .
Current date.
Current time and date.
Carriage return and line feed.
Current page number.
Current page number right-justified in
four spaces.
Inhibits paging.
Two consecutive quotes print a single
quote.

When FOOTING is used, all terminal output is paged
(i.e., a carriage return must be pressed when a
full page has been printed), unless the N option
is used.

FOOTING statements may be changed or cleared
independently, without altering the page number.
The first FOOTING statement issued causes a page
advance and a new footing, even if the footing is
null. A FOOTING statement may be cleared by
placing a null string after the statement. Unless
both the heading and the footing are cleared,
changing an existing heading or footing does not
affect the page number.

FOOTING "'L' 'L' TIME & DATE: 'T'"

Advances current output device to top-of-page.
When page is full, there will be two carriage
returns/line feeds followed by the text TIME &
DATE:, followed by the current time and date
printed at the bottom.

4-39

DATA/BASIC Statements

FOR

Purpose

Syntax

Comments

Examples

4-40

The FOR statement begins a loop that is terminated
by a NEXT statement. FOR and NEXT loops may be
nested, and they can contain WHILE and UNTIL
condition clauses.

FOR variable=exp1 TO exp2 {STEP exp3} {WHILE exp4}
FOR variable=exp1 TO exp2 {STEP exp3} {UNTIL exp4}

Variable contains the value to be incremented or
decremented. Exp1 and Exp2 indicate how many
times the loop should be executed. Exp3 specifies
the number by which to increment exp1, and exp4 is
an additional limiting value.

FOR and NEXT loops that are contained inside other
FOR and NEXT loops are called nested loops. For
example:

FOR 1=1 TO 10
FOR J=l TO 10

PRINT B(I,J)
NEXT J

NEXT I

In this example, the inner loop (FOR J=l TO 10)
executes 10 times for each pass through the outer
loop (FOR 1=1 TO 10). The outer loop is executed
10 times also, so the statement PRINT B(I,J) is
actually executed a total of 100 times. Matrix B
will be printed in the following order: B(l,l),
B(1,2), B(1,3), ... , B(1,10), B(2,1), B(2,2), ... ,
B(10,10).

Loops can be nested to any number of levels.
Howev'er, a nested loop must be completely
contained within the range of the outer loop
(i.e., the ranges of the loops may not cross).

FOR 1=1 TO 10 STEP .5 UNTIL A>100

Executes until 1=10 or until the statements within
the loop cause A to be greater than 100.

87,-1360

FOR (Continued)

A=20
FOR J=l TO 10 WHILE A<25

A=A+1
PRINT J,A

NEXT J

DATA/BASIC Statements

Executes five times. Variable A reaches 25 before
variable J reaches 10.

ST="X"
FOR B=l TO 10 UNTIL ST="XXXXX"

ST=ST: "X"
NEXT B

Executes four times. An X is added to the string
variable ST until ST = XXXXX.

A=O
FOR J=l TO 10 WHILE A<25

A=A+1
PRINT J,A

NEXT J

Executes 10 times. Variable J reaches 10 before
variable A reaches 25.

Note: The Basic Compiler looks for a one-to-one
correspondence between each FOR and each
NEXT statement. It also ensures that each
NEXT statement contains a variable name.
However, the compiler does not compare the
variable names in the NEXT statements to
the variable names in the FOR statements.
This necessitates careful programming to
avoid improperly nesting of FOR - NEXT
loops.

87-1360 4-41

DATA/BASIC Statements

GETLIST

Purpose

Syntax

Comments

Examples

4-42

GETLIST produces a list of item-ids for a
subsequent READNEXT statement.

GETLIST list-name {account-name} {TO select-var}
{SETTING var} THEN/ELSE .

The list may have been previously saved in the
POINTER-FILE by a SAVE-LIST, FORM-LIST or EDIT­
LIST command executed at TCL or from a WRITELIST
statement executed in a DATA/BASIC program.

List-name is any variable or expression that
represents the name under which the list was
saved. To access lists saved from other accounts,
specify account-name.

If the TO clause is specified, the list is
assigned to select-var (as in SELECT CUST TO
CUSTLIST); otherwise, the default select-variable
is used.

If the SETTING clause is used, then var is
assigned the number of items in the list.

If the list does not exist in the POINTER-FILE,
the ELSE clause is executed.

Multiple pointers into the same list may be
maintained by executing multiple GETLIST
statements to the same list-name.

Any number of GETLIST statements can be executed
in a DATA/BASIC program, and any number of lists
may exist simultaneously by specifying the TO
clause.

GETLIST "TEXT" ELSE STOP

Produces a list of item-ids using the default
select variable.

87-1360

DATA/BASIC Statements

GETLIST (Continued)

87-1360

x = "SAVE.DATA"
GETLIST X TO Y SETTING NUMBER

ELSE PRINT "NOT FOUND"; STOP
READNEXT ID FROM Y ELSE ...

Selects and prints a list of item-ids in SAVE.DATA
and assigns it to variable .Y. The number of items
in the list is assigned to NUMBER and printed. If
list does not exist in the POINTER-FILE, the error
message prints and the program terminates.

GETLIST "S.CARS SYSPROG" TO LIST ELSE STOP
READNEXT ID FROM LIST ...

Selects list of item-ids previously saved in
S.CARS in the SYSPROG account and assigns it to
list.

4-43

DATA/BASIC Statements

GO

Purpose

Syntax

Comments

Example

4-44

The GO (or GOTO) statement unconditionally
transfers program control to any statement within
the DATA/BASIC program.

GO{TO} statement-label

Control is transferred to the statement with the
specified statement-label. If the label does not
exist, an error is printed at compile time.

100 A=O

* BRANCH TO STATEMENT 500
200 GOTO 500

500 A=B+C
D=100

* REPEAT PROGRAM
GO 100

Transfers control from statement 200 to statement
500. Execution continues sequentially until GO
100 transfers control back to statement 100.

87-1360

GOSUB

Purpose

Syntax

Comments

Examples

87-1360

DATA/BASIC Statements

The GOSUB statement transfers control to the
subroutine beginning with the specified label.

GOSUB statement-label

GOSUB transfers control to a subroutine specified
by statement-label, and ex.ecution continues
sequentially from that statement until a RETURN or
RETURN TO statement is encountered.

The RETURN statement returns control to the
statement immediately following the GOSUB
statement that called the subroutine.

The RETURN TO statement returns control to a
specific statement specified by statement-label.

If the GOSUB or the RETURN TO statement refers to
a statement-label which does not exist, an error
message is printed at compile time.

A=l
GOSUB 100

Transfers control to the statement with label 100.

10 GOSUB 30
15 PRINT Xl

20 GOSUB 30

STOP
30 * SUBROUTINE

IF ERROR RETURN TO 99
40 RETURN
99 * ERROR RETURN HERE

Transfers control to statement 30. The subroutine
is executed and statement 40 transfers control
back to the statement following the original GOSUB
(15 PRINT Xl). Execution proceeds sequentially to
statement 20, where control is again transferred
to statement 30. If the logical variable error is
true (1), the conditional RETURN TO 99 path is
taken: otherwise, control passes to back to
statement 15 once again.

4-45

DATA/BASIC Statements

GROUPSTORE

Purpose

Syntax

Comments

Examples

4-46

GROUPS TORE inserts a string of elements (groups)
into another string replacing all, part, or none
of the string. (Contrast with the GROUP intrinsic
function in Chapter 5.)

GROUPSTORE substr IN string USING start#, replace#
{,delim}

Substr is the string to be inserted within string.

Start' is the position in string to begin
replacing elements. If the specified start# is 0,
default is to 1. If the specified start# is
greater than the number of elements in string, the
replacement string will be appended to the string.

Replace' is the number of elements in string to
replace with elements of substr. How these
elements are replaced depends on whether replace#
(r) is positive, zero or negative.

If r > 0

If r = 0

If r < 0

R elements of string are replaced by
the first r elements of substr.
Replacement stops if number of
elements in string is exhausted.

All of substr is inserted before
start# position in string.

R elements of string are deleted
starting at start#, and the entire
substr is inserted at this position.

Delim is a one-character delimiter to be placed
between elements of string and substr. If not
specified, it defaults to an AM. If more than one
character is specified as delim, only the first
character is used.

Note: If both start# and replace# are less than
zero, substr is ignored and the number of
elements specified in replace# are deleted,
starting with start#.

x = "123DEF"
GROUPSTORE "ABC" IN X USING 1,1

Replaces the value 123DEF in string X with ABC, so
X = "ABC".

87-1360

DATA/BASIC statements

GROUPS TORE (Continued)

87-1360

A = "lOX"
B = "XXXXXXXXXXX"
GROUPSTORE A IN BUSING 1,3

Replaces the current value of B (attribute 1) with
the string "lOX". Although 3 replacements were
specified, only 1 replacement was made as the
string was exhausted.

A = "ABC456"
GROUPSTORE "123" IN A USING 1,0
PRINT A

Prints 123"ABC456. Because the replace# = 0, the
replacement string is inserted before the existing
string.

STR = "44"88"99]2\7\4"8"99
GROUPS TORE "ABC" IN STR USING 3,1
PRINT STR

A="ABCXLMNXGHIXJKL"
B="DEF"
Z="X"
GROUPS TORE B IN A USING 2,1,Z
PRINT A

Prints ABCXDEFXGHIXJKL. Replaced the second
element of A (delimited by X) with DEF.

4-47

DATA/BASIC Statements

HEADING

Purpose

Syntax

Comments

4-48

The HEADING statement causes the current output
device to page and prints the specified text at
the top of the page.

HEADING "expression"

Expression is the string to be printed at the top
of each page.

The page size is determined by the most recent
TERM command executed at TCL. If the heading is
longer than the TERM line length, the heading
wraps around to the next line.

Special heading control characters may be used as
part of the HEADING statement. They are:

Character

'C{n}'

'0'
'T'
'L'
'P'
'PP'

'N' , ,

or \\\
or
or]
or
or AA

Definition

Center line (in field of n
characters).
Current date.
Current time and date.
Carriage return and line feed.
Current page number.
Current page number right-justified in
four spaces.
Inhibits paging.
Two consecutive quotes print a single
quote.

When HEADING is used, all terminal output is paged
(i.e., a carriage return must be pressed when a
full page has been printed), unless the N option
is used. '

HEADING statements may be changed or cleared
independently, without altering the page number.
The first HEADING statement issued causes a page
advance and a new heading, even if the heading is
null.

A HEADING statement may be cleared by placing a
null string after the statement. Unless both the
heading and the footing are cleared, changing an
existing heading or footing does not affect the
page number.

87-1360

DATA/BASIC Statements

HEADING (Continued)

Examples HEADING "OUTPUT"

87-1360

Advances current output device to top-of-page, and
OUTPUT is printed as the page heading.

HEADING "'T' 'PI 'L'"

Advances output device to top-of-page and prints
time, date and page number, followed by a carriage
return/line feed.

S="JANE' 'S REPORT'L'PAGE'PP'"
HEADING S

Advances to top-of-page and prints JANE'S REPORT,
followed by a carriage return/line feed, and PAGE,
followed by the current page number right­
justified in a field of 4 spaces.

HEADING ""

Clears the HEADING statement currently in effect.

4-49

DATA/BASIC Statements

IF (single-line)

Purpose

Syntax

Cononents

Examples

4-50

The single-line IF statement allows conditional
execution of a sequence of DATA/BASIC statements.

IF expression THEN/ELSE

If the test condition specified by the expression
is true (i.e., nonzero), then the statement(s)
following THEN are executed.

If the expression is false (zero), the
statement(s) following ELSE are executed. If the
ELSE case is omitted, then control passes to the
next sequential statement following the entire IF
statement.

One or more statements may follow the THEN or ELSE
clause, but they must all be on the same line and
separated by semicolons. For example:

IF ITEM THEN PRINT X; X=X+1 ELSE PRINT Y; GO 5

If the current value of item is true (nonzero),
the value of X is printed and incremented by 1.
Control then passes to the next statement in the
program. If ITEM is false (zero), the value of Y
is printed and control transfers to statement 5.

Any statements may appear in THEN and ELSE
clauses, including more IF statements.

IF A="STRING" THEN PRINT "MATCH"

Prints MATCH if value of A is STRING.

IF X>5 THEN IF X<9 THEN GOTO 10

Transfers control to statement 10 if X is greater
than 5 but less than 9.

IF Q THEN PRINT A ELSE PRINT B; STOP

Prints value of A if Q is a nonzero integer or if
Q evaluates to a null string. If Q=O, value of B
is printed and program terminates. If Q is not an
integer, an error message is returned.

87-1360

DATA/BASIC Statements

IF (single-line) (Continued)

87-1360

IF A=B THEN STOP ELSE IF C THEN GOTO 20

Terminates program if A=B; if A does not equal B
and C is nonzero, control passes to statement 20.

IF A = 0 ELSE PRINT A

Prints value of A if it is nonzero. If A is zero,
control passes to next statement.

4-51

DATA/BASIC Statements

IF (multiline)

Purpose

Syntax

Comments

4-52

The multiline IF statement is functionally
identical to the single-line IF statement;
however, the statement sequences may be placed on
multiple program lines.

There are four possible forms for the multiline IF
statement. They are outlined below:

IF expression THEN
statement(s)

END {ELSE statement(s)}

IF expression THEN
statement(s)

END {ELSE
statement(s)

END}

IF expression THEN statement(s) {ELSE
statement(s)

END}

IF expression ELSE
statement(s)

.END

The statement sequences in the THEN and ELSE
clauses may be placed on multiple program lines,
with each sequence terminated by an END.

For every multiline THEN and ELSE statement, there
must be a corresponding END statement. If there
are not enough END statements, a compilation error
results. If there are too many END statements,
the program may compile successfully, but the
program may terminate early and not all of the
program statements may get compiled.

87-1360

DATA/BASIC Statements

IF (multiline) (Continued)

Examples IF ABC=ITEM+5 THEN

87-1360

PRINT ABC
STOP

END ELSE PRINT ITEM; GOTO 10

Prints value of ABC and terminates program if
ABC=ITEM+5; otherwise, the .value of ITEM is
printed and control passes to statement 10.

IF NUM THEN
PRINT MESSAGE
PRINT NUM
NUM 100

END

Prints value of MESSAGE and NUM and assigns 100 to
NUM if value of NUM is nonzero.

10 IF S="XX" THEN PRINT "OK" ELSE
PRINT "NO MATCH"
PRINT S
STOP

END
20 REM REST OF PROGRAM

Prints OK and passes control to statement 20 if s
is XX; otherwise, NO MATCH and the value of S are
printed, and the program terminates. .

IF X>l THEN
PRINT X
X=X+1

END ELSE

END

PRINT "NOT GREATER"
GOTO 75

If X>l, prints value of X, increments X and passes
control to statement following the second END;
Otherwise, prints NOT GREATER and passes control
to statement 75.

4-53

DATA/BASIC Statements

INCLUDE

Purpose

Syntax

Comments

Examples

4-54

The INCLUDE statement stores large or commonly
used sections of code, such as COMMON or EQUATE
areas, outside the source code item.

INCLUDE item-name {FROM {DICT} filename}

INCLUDE may be used anywhere ·within a DATA/BASIC
program as often as desired, so the source code
may expand to any size.

INCLUDE must be the only statement on the line.
Filename is optional. If omitted, the item-name
is retrieved from the file containing the item
being processed.

An included item may contain INCLUDE statements in
addition to other code, up to 150 levels. An item
may contain any number of INCLUDE statements,
which altogether count as one of the 150 levels.

When you compile a program containing INCLUDE
statements, an initial pass is made on the source
item to merge in the included items. Since the
compiler processes only the resulting program, any
line number references will be different from the
attribute numbers in the actual item(s). The only
way to obtain the correct line numbers is to use
the 'L' option when compiling the program or to
use BLIST with the 'M' option.

INCLUDE ITEMA

. Includes the item called ITEMA from the file
containing the program being compiled.

INCLUDE ITEMI FROM TESTFILE

Includes ITEMI in the current program.

INCLUDE A FROM DICT FILEN

Includes item A, found in the dictionary level of
file FILEN, in the program being compiled.

87-1360

INPUT

Purpose

Syntax

Comments

87-1360

DATA/BASIC Statements

The INPUT statement prompts the user for input.

INPUT variable{,length}{:}{ } {WITH expression}
{FOR time THEN/ELSE} -

INPUT displays a prompt character at the user's
terminal. The user types in a numeric quantity or
a string, which is assigned to variable.

If the optional length is specified, an automatic
RETURN is executed as soon as that many characters
have been entered. This is useful when
programming fixed length input fields, because it
eliminates the need to enter a RETURN. If length
is not specified, the maximum input is 140
characters.

If the optional colon (:) is used, the carriage
return is inhibited, and the cursor remains
positioned after the value input. This is useful
when programming multiple inputs on one line.

The optional backarrow «) or underline (_) is
used in conjunction with the length specification.
When the specified number of characters has been
input, the program waits for a carriage return to
be entered. If the user tries to enter more
characters, the bell sounds at the terminal.

The WITH expression lets you specify 1 or 2
optional delimiters for terminating input from the
terminal.

FOR time specifies how long the system waits for
input before transferring program control. Time
is specified in tenths of seconds. The maximum
number that may be used is 32,767, corresponding
to 54 minutes and 36 seconds.

If the input is entered within the specified time,
control transfers to the THEN clause. Otherwise,
control transfers to the ELSE clause.

The options must appear in the order shown in the
syntax above.

If only a carriage return is entered in response
to the prompt, a null string is assigned to
variable.

4-55

DATA/BASIC Statements

INPUT (Continued)

Examples

4-56

INPUT VAR

Requests a value for variable VAR.

L=3
INPUT X,L

Requests input for variable X. When three
characters have been entered, a carriage return is
executed automatically.

INPUT Y:

Requests input for variable Y. No carriage return
is executed after the value is entered.

EQU CR TO CHAR(13)
INPUT STATE WITH CR

Requests input for STATE. When you want to
terminate input, just press the carriage return
key.

INPUT VAR,2 FOR 50 ELSE GO 99

Waits five seconds for user to enter a carriage
return after a two-character value is input for
STATE. If the five seconds elapse and nothing is
input, control transfers to statement 99.

INPUT STRING,8 WITH ".":"/" FOR 100 THEN
PRINT "STRING WAS INPUT IN TIME"

END ELSE
PRINT "INPUT TOO SLOW"

END

Prompts for a string no longer than 8 characters.
If no input has been entered after 10 seconds, the
ELSE clause is taken. Otherwise, the THEN clause
is executed. To terminate input, type either a .
or a /.

87-1360

INPUT USING

Purpose

Syntax

Comments

DATA/BASIC Statements

The INPUT USING statement solicits input data from
the terminal under control of the SCREENPRO Screen
Processor.

INPUT var1 USING var2 {,source-exp} {AT step#}
{SETTING var3} THEN/ELSE

Varl is the destination variable or array where
data returned from the Screen Processor goes. It
also identifies the type of data structure being
used (in this case, a dynamic array).

Var2 specifies the name of the variable containing
the compiled screen definition item.

Note: The compiled screen definition item must
have been read and assigned to a variable
previously, via a DATA/BASIC READ statement.

Source-exp specifies the data structure where the
data that is passed to the Screen Processor for
updating resides. Data passed to the Screen
Processor must be in the same format as data
returned from the Screen Processor.

AT stepf specifies the screen's step number at
which to begin processing. If not specified,
processing begins with Step 1.

The SETTING clause specifies a variable (var3)
that will be assigned to the screen's current step
number when a screen exit occurs.

The AT and SETTING clauses provide a means to exit
from the screen, perform auxiliary operations in
the program and return to the screen either at the
point where the exit occurred, or at another
screen step.

The ELSE clause is executed when an exit from the
screen is processed. If the screen steps end
normally or a File Item command is processed, the
ELSE clause is skipped, and control is passed to
the next statement in the program.

87-1360 4-57

DATA/BASIC Statements

INPUT USING

Examples

4-58

(Continued)

OPEN "C/M.SCREENS" ELSE
STOP 201,"C/M.SCREENS"
END

READ CUST.UPD.SCRN FROM "#C/M.UPDATE" ELSE
PRINT "COMPILED SCREEN MISSING"
STOP
END

OPEN "CUST/MASTER" TO CM ELSE
STOP 201,"CUST/MASTER"
END

PRINT "ENTER CUSTOMER NUMBER:":
INPUT C.NUMBER
READ ITEM FROM CM,C.NUMBER ELSE

STOP 202,C.NUMBER
END

INPUT ITEM USING CUST.UPD.SCRN,ITEM ELSE
GOTO 10
END

WRITE ITEM ON CM,C.NUMBER

Opens C/M.SCREENS file and reads the compiled
screen definition. Opens CUST/MASTER file and
prompts fro a customer number. Input customer
number, reads data item and updates data item
using a predefined screen. Writes updated item to
file.

87-1360

INS

Purpose

Syntax

Comments

DATA/BASIC Statements

The INS statement inserts an attribute, value or
subvalue into a dynamic array using a dynamic
array reference. (The INS statement makes the
INSERT intrinsic function obsolete.)

INS expression BEFORE dyn-array-reference

Expression specifies the value to be inserted into
the dynamic array at the position specified by
dyn-array-reference. Expression may be a dynamic
array reference itself.

Dynamic array indices are evaluated as follows:

1. Nonnumeric expressions print a warning message
and default to zero.

2. Noninteger expressions truncate the decimal
value (i.e., 1.7 and 1.2 become 1).

3. All trailing zero-valued positional expres­
sions (except attr#-expression) are ignored.

4. Any remaining zero-valued positional
expressions are treated as ones.

5. If multiple negative positional values occur,
the first occurrence remains negative and
subsequent values are converted to 1.

6. The single remaining negative value creates a
new position according to the following:

If the dynamic array is not null, the
insertion value (preceded by a delimiter)
is added as a new attribute, value or
subvalue (depending on which position was
negative) at the end of the existing item,
attribute or value, respectively. The
remaining positional values, if any, are
treated as usual.

If the dynamic array is null, the negative
value is converted to 1, and Rule 7 below
is applied.

7. If the positional expression specifies a
nonexistent position (i.e., greater than the
number of attributes, values or subvalues
below), or if the dynamic array is initially
null, then nulls are created where necessary
to put the insertion value in the position
specified by the expressions.

87-1360 4-59

DATA/BASIC Statements

INS (Continued)

Examples INS 123 BEFORE ITEM<3>

Inserts attribute value 123 before the third
attribute in dynamic array ITEM.

INS PRICE<3> BEFORE A<X,Y>

Inserts value of attribute 3 in array PRICE before
the Y'th multivalue in the X'th attribute in
dynamic array A.

INS YR*365 BEFORE ORDER<I,J,3>

Inserts value of YR*365 before the third subvalue
in the specified multivalue and attribute.

IF PART<1,X+2> = 0 THEN
INS 1 BEFORE PART<1,X+2>
END

If the multivalue is zero, then a new multivalue
(1) is created before the indicated multivalue.

For the following examples:
N ""
S = "1\2\3]11\22]333 A A\B\C]AA"
X = "XXX"

INS X BEFORE S<0,2,0>

Result = 1\2\3]XXX]11\22]333 A A\B\C]AA. (See Rules
3 and 4 above.)

INS X BEFORE S<1,-2,-5>

Result = 1\2\3]11\22]333XXX A A\B\C]AA. (See Rules
5 and 6 above.)

INS X BEFORE N<1,2,0>

Result =]XXX. (See Rules 3 and 7.)

4-60 87-1360

LOCATE

Purpose

Syntax

Comments

87-1360

D~/BASIC Statements

The LOCATE statement finds the position of an
expression within a dynamic array or within an
attribute or value of a dynamic array.

LOCATE expl IN exp2{<attr# {,value#}>}{,start­
position} {BY seq} SETTING variable THEN/ELSE

LOCATE(expl,exp2{,attr#{,value#}};setting­
variable{;seq}) THEN/ELSE

Note: The syntax of the LOCATE statement is
different on releases prior to 3.2. If you
are running a release older than 3.2, use
the FIX-LOCATE verb to update old programs.

Exp1 can be a literal string, variable, array
element or function that specifies the value or
string to be located. It must not contain
attribute marks. If expl is null, the position
returned indicates the last position, unless there
is a null element in the string being searched.
The up arrow (A) and brackets ([,]) are reserved.

Exp2 is the dynamic array being searched.

If neither attr# nor value' is specified, an
attribute search takes place, with start-position
specifying the attribute where the search begins.
This way, you can skip over unwanted attributes.
A value of 1 searches the entire dynamic array.

Note: If you use the second form of the LOCATE
statement, the start-position value always
defaults to 1.

If only attr# is supplied, a value search is
performed within the specified attribute only. In
this case, start-position refers to a value. This
lets you skip over unwanted values in that
attribute. When searching values, expl must not
contain any value marks.

If both attr# and value# are specified, a subvalue
search occurs, within the specified multivalue,
which is contained inside the specified attribute.
Start-position refers to the subvalue mark where
the search is to begin. Expl may not contain any
subvalue marks.

4-61

DATA/BASIC Statements

LOCATE (Continued)

Examples

4-62

Note: If the start-position number is greater than
the number of elements specified, then
variable will be set to this number. If
used with a dynamic array insertion, the
value is placed at this position with null
attributes, values or subvalues in between.

BY seq specifies that the elements in the dynamic
array are sorted in ascending or descending order.
The following sequences are available and must be
enclosed in double quotes:

AL ascending, left-justified (standard
alphanumeric sort).

AR ascending, right-justified (useful for
numerics with different lengths).

DL descending, left-justified (standard
alphanumeric sort).

DR descending, right-justified (useful for
numerics with different lengths).

Variable (or setting-variable) is the name that
will contain the position number of the value
being searched for. If the value is not found,
the THEN/ELSE clause is executed and one of two
things may happen.

If no sort order was specified, the variable
is set to the position past the last
attribute.

If a sort order was specified, then variable
is set to the correct position where the
value should go, so the elements remain in
order.

LOCATE "CALIF" IN DA SETTING POS ...
ELSE PRINT 'NO "CALIF"'; STOP

Locates attribute with string value CALIF in
dynamic array DA, starting the search with the
first attribute. If CALIF is not found, error
message is printed. POS is set to a value
indicating the position of the attribute in DA.

87-1360

DATA/BASIC Statements

LOCATE (Continued)

87-1360

ITEM = "24"RESISTOR"243]523]311]10]3"
A = 10
LOCATE(A,ITEM<3>,2iK) ELSE PRINT "NOT FOUND"; STOP

Locates multivalue equal to 10 in the third
attribute of dynamic array ITEM. Search begins
with the second multivalue. K is set to the value
indicating the position of 10 in the third
attribute (i.e., 4).

1=3
A=2
V=5

PRINT "ENTER QTY TO DELETE":
INPUT QTY
LOCATE QTY IN ARRAY(I)<A,V> SETTING J ...

ELSE PRINT "QTY NOT FOUND"i STOP
DEL ARRAY(I)<A,V,J>

Prompts for terminal input, then locates the
subvalue QTY in the second attribute and the fifth
multivalue in the dynamic array assigned to the
third element of ARRAY. Scanning begins with the
first subvalue. J is set to a value indicating
the position of the value of QTY. If found, it is
deleted; otherwise, the message is printed.

DEPT="PERSNL"
LOCATE(DEPT,ITEM<2>;K;"AL") ELSE

ITEM=INSERT(ITEM,2,X,0,DEPT)
END

Locates multivalue PERSNL in second attribute of
dynamic array ITEM. The multivalues in the second
attribute are sorted in ascending order, left­
justified. If the value of DEPT (PERSNL) is not
found, it is inserted in the proper order, as
defined by X (Le., if ITEM=19"ACCT]ENG]PROD"12]6,
it would now be 19"ACCT]ENG]PERSNL]PROD"12]6.

4-63

DATA/BASIC Statements

LOCATE (Continued)

4-64

In the following examples, dynamic array INFO
contains "22"76"'24] 523]21 9]7\4 \54".

LOCATE(76,INFO;K) ELSE PRINT "NOT THERE"; STOP

Searches first attribute of dynamic array INFO for
76. Returns a 2.

LOCATE 54 IN INFO<4,2> SETTING K ...

ELSE PRINT "NOT FOUND"; STOP

Searches all subvalues within attribute 4, value 2
and returns a 3.

LOCATE(523,INFO<3>;K) ELSE GOTO 10

Searches values in attribute 3 and returns a 2.

87-1360

LOCK

Purpose

Syntax

Comments

Examples

87-1360

DATA/BASIC Statements

The LOCK statement sets an execution lock, so
multiple DATA/BASIC programs cannot update the
same file simultaneously.

LOCK expression {THEN/ELSE}

Expression specifies which.execution lock is to be
set. This is determined by the programmer.

If the specified lock has already been set by
another concurrently running program, and an ELSE
clause is not provided, execution halts
temporarily, until the lock is reset by the other
program.

If an ELSE clause has been provided, the
statements in the ELSE clause are executed and the
program continues.

Another DATA/BASIC program cannot set the same
lock, until it is reset with the UNLOCK statement,
by the program that originally issued the LOCK.

To lock single items in a file, use the READU,
READVU and MATREADU statements.

Note: The DATA/BASIC and PROC processors use the
same 256 execution locks, numbered 0-255.

LOCK 15 ELSE STOP

Sets execution lock 15. If lock 15 is already
set, the program terminates.

LOCK 2

Sets execution lock 2.

LOCK 10 ELSE PRINT X; GOTO 5

Sets execution lock 10. If it is already set, X
is printed and control transfers to statement 5.

4-65

DATA/BASIC Statements

LOOP

Purpose

Syntax

Comments

Examples

4-66

The LOOP statement constructs program loops, using
either WHILE or UNTIL conditions.

LOOP {statement(s)} WHILE expression DO
{statement(s)} REPEAT

LOOP {statement(s)} UNTIL expression DO
{statement(s)} REPEAT

If specified, the statement(s) following LOOP are
executed first. Then the expression is evaluated.

If the expression following WHILE or UNTIL
evaluates to true (nonzero), the statement(s)
following DO, if any, are executed and control
goes back to the beginning of the loop. If the
expression evaluates to false (zero), control
passes to the next sequential statement following
REPEAT.

Statements used within the loop may be placed on
one line separated by semicolons, or they may be
placed on multiple lines.

Because the loop statement requires a logical
condition (one which evaluates to 0 or 1), the
compiler allows a READNEXT or a LOCATE statement
to provide this conditional. The READNEXT
statement always returns a 0 or 1, depending on
whether or not it can assign an item-id from a
select-list.

A=O
LOOP UNTIL A=4 DO A=A+l; PRINT A REPEAT

Prints sequential values of A from 1 through 4.
(Loop executes 4 times.)

J=O
LOOP
PRINT J
J=J+l
WHILE J<4 DO REPEAT

Prints sequential values of J from 0 through 3.
(Loop executes 4 times.)

87-1360

DATA/BASIC Statements

LOOP (Continued)

X=100

87-1360

LOOP X=X-10 WHILE X>40 DO PRINT X REPEAT

Prints values of X from 90 down through 50 in
increments of -10, so the loop executes 5 times.

Q=6
LOOP Q=Q-1 WHILE Q DO

PRINT Q
REPEAT

Prints value of Q in this order: 5, 4, 3, 2, 1.

B=l
LOOP UNTIL B=6 DO

B=B+1
PRINT B

REPEAT

Prints values of B from 2 through 6, as loop
executes 5 times.

LOOP 1=1+1 WHILE READNEXT 10 DO REPEAT

Increments I as long as item-ids are read from
select-list.

4-67

DATA/BASIC Statements

MAT

Purpose

Syntax

COlIDDents

Examples

4-68

The MAT assignment and copy statements are used to
assign values to each element in an array.

MAT variable = expression
MAT variable = MAT variable

The MAT assignment statement· (first syntax above)
assigns a single value (the result of expression)
to all elements in an array (specified by
variable). The specified array must have been
previously dimensioned by a DIMENSION or COMMON
statement.

The MAT copy statement copies one array to
another. The first element of the array on the
right becomes the first element of the array on
the left, and so on. Each variable must have been
dimensioned, and the number of elements in the two
arrays must match; if not, an error message
displays and the program transfers to the
debugger.

Arrays are copied in row major order. For
example:

Program Code

DIM X(5,2), Y(10)
FOR 1=1 TO 10

Y(l)=l
NEXT I

MAT X = MAT Y

Resulting Array Values

X(l,l) = Y(l) = 1
X(1,2) = Y(2) = 2
X(2,1) = Y(3) = 3

X(5,2) = Y(10) = 10

This example dimensions two arrays, both having 10
elements, initializes array Y to the numbers 1
through 10, then copies array Y to array X.

MAT TABLE=l

Assigns a value of 1 to each element of array
TABLE.

MAT XYZ=A+B/C

Assigns the value of expression A+B/C to each
element of array XYZ.

87-1360

DATA/BASIC Statements

MAT (Continued)

87-1360

DIM A(20), B(20)

MAT A = MAT B

Dimensions two vectors of equal length and assigns
the values of the elements. in array B to the
corresponding elements in array A.

DIM TABl (10,10), TAB2(50,2)

MA'l' TABI = MAT TAB2

Dimensions two arrays to the same number of
elements and copies TAB2 values to TABI in row
major order.

4-69

DATA/BASIC Statements

MATBUILD

Purpose

Syntax

Comments

Examples

4-70

The MATBUILD statement builds a string variable
from a dimensioned array. (MATBUILD performs the
opposite function of the MATPARSE statement.)

MATBUILD variable FROM array{,start{,end}} {USING
character}

Array must be a dimensioned array.

Start and end are the optional starting and ending
positions from which to start and stop retrieving
elements from array.

If start is <= 0, it defaults to 1. If end is < 0
or > the size of array, it defaults to the size of
array. If start is > end and end is >= 0, no
operation takes place. If end is a negative
number, it indicates that assignment should
continue through the end of the array.

Variable is the destination variable for data
built from elements of array.

Character is an optional delimiter to be inserted
between elements of array when building variable.
It can be any value from hex 00 to hex FE, and
must be enclosed in single quotes.

If it is omitted or if it is specified, but null,
character defaults to an attribute mark. If more
than one character is specified, only the first
one is used.

During the MATBUILD process, a string is built and
assigned to variable by concatenating all elements
of array together, separated by character. The
process terminates when the last element of array
has been processed, or when all remaining elements
of array are null. That way, variable contains no
trailing, null elements.

No run time error messages are ever generated.

MATBUILD VARI FROM ARRAY1

Builds a string VAR1 from the values of ARRAY1
concatenated together.

87-1360

DATA/BASIC Statements

MATBUILD (Continued)

87-1360

DIM ARR(5)
ARR{l) = 'A3'
ARR(2) = 'FE'
ARR(3) = ' 56 '
ARR(4) = 'C7'
ARR(5) = '3D'

MATBUILD X FROM ARR,2

Builds the string "FE"56"C7"3D", starting with the
second element of ARR through the end, and assigns
it to X.

MATBUILD B FROM ARR USING I,'

Builds string B from ARR using a comma as
delimiter. String B contains "A3,FE,56,C7,3D".

DIM Y(4)
Y (1) = 'TH IS'
Y(2) = 'IS'
Y(3) = 'A'
Y(4) = 'TEST'

MATBUILD SENTENCE FROM Y USING ' ,

Takes elements of array Y and builds them into the
string SENTENCE with a blank space between each
word.

4-71

DATA/BASIC Statements

MATINPUT USING

Purpose

Syntax

Comments

Example

4-72

The MATINPUT USING statement solicits input data
from the terminal under control of the SCREENPRO
Screen Processor. The input/output data for
SCREENPRO is in the form of a dimensioned array.

MATINPUT varl USING var2 {,source-exp} {AT step#}
{SETTING var3} THEN/ELSE .

Varl is the destination variable or array where
data returned from the Screen Processor goes. It
also identifies the type of data structure being
used (in this case, a dimensioned array).

Var2 specifies the name of the variable containing
the compiled screen definition item.

Note: The compiled screen definition item must
have been read and assigned to a variable
previously, via a DATA/BASIC READ statement.

Source-exp specifies the data structure where the
data that is passed to the Screen Processor for
updating resides. Data passed to the Screen
Processor must be in the same format as data
returned from the Screen Processor.

AT stepl specifies the screen's step number at
which to begin processing. If not specified,
processing begins with Step 1.

The SETTING clause specifies a variable (var3)
that will be assigned to the screen's current step
number when a screen exit occurs.

The AT and SETTING clauses provide a means to exit
from the screen, perform auxiliary operations in
the program and return to the screen either at the
point where the exit occurred, or at another
screen step.

The ELSE clause is executed when an exit from the
screen is processed. If the screen steps end
normally or a File Item command is processed, the
ELSE clause is skipped, and control is passed to
the next statement in the program.

MATINPUT REC USING INVOICE.SCRN ...
SETTING RETURN.STEP ELSE GOTO 25

Updates array REC using a predefined screen.

87-1360

MATPARSE

Purpose

Syntax

Comments

87-1360

DATA/BASIC Statements

MATPARSE assigns the elements of a string variable
to the variables of a dimensioned array.
(MATPARSE performs the opposite function of the
MATBUILD statement.)

MATPARSE array{,start{,end}} FROM variable {USING
character} {SETTING nmelements}

Array must be a dimensioned array.

Start and end are the optional starting and ending
positions from which to start and stop assigning
elements within array.

If start is <= 0, it defaults to 1. If end is
omitted, or if it is < 1 or greater than the size
of the array, assignment continues to the end of
the array. If start> end and end is >= 0, no
operation is performed.

Variable is the source variable from which data is
assigned to the elements of array.

Character is the optional delimiter found between
elements of the variable used to build the array.
It can be any value from hex 00 to hex FE, and
must be enclosed in single quotes.

If it is omitted or if it is null, character
defaults to an attribute mark. If more than one
character is specified, only the first one is
used.

The value nmelements is the number of elements of
array that are assigned a value from variable.

During the MATPARSE process, each element of
variable is assigned to a successive element or
array. If the size of array is greater than the
number of parsed elements of variable, the
remaining elements of array are assigned a null
value. The process terminates when the last
element of array has been assigned a value, even
if variable has not been exhausted yet.

No run time error messages are ever generated.

4-73

DATA/BASIC Statements

MATPARSE (Continued)

Examples

4-74

x = "1.2.2.1.2.3.4.4.8.2"
DIM ARR(10)
MATPARSE ARR FROM X USING , , .
Assigns each element of X, separated by a period,
to dimensioned array ARR.

A = "THIS IS A TEST FOR YOU."
DIM B(12)
MATPARSE B FROM A USING ' , SETTING Y
PRINT Y

Assigns the elements of variable A to array Band
prints the value 6, the number of elements
assigned to array B.

VAR = "3,2,5,9,9,2,8"
DIM ARR(4)

MATPARSE ARR FROM VAR USING '

Assigns only the first four values of variable VAR
to array ARR, because ARR has only four elements.

VI = "ABC"DEF"GHI"JKL"MNO"PQR"
DIM ARRl(15)
MATPARSE ARRl,5,10 FROM VI

Assigns the values of variable VI to dimensioned
array ARRl, starting with the fifth element of
ARRI and ending with the tenth element.

87-1360

MATREAD

Purpose

Syntax

Comments

Examples

87-1360

DATA/BASIC Statements

The MATREAD statement reads a file item and
assigns each attribute to consecutive elements of
a dimensioned array.

MATREAD array FROM {file-variable,}item-id
{SETTING var} THEN/ELSE

File-variable specifies the file previously
assigned to that file-variable via an OPEN
statement.

If a file-variable is not specified, the internal
default file-variable is used (i.e., the file most
recently opened without a file-variable).

If the SETTING clause is used and the read is
successful, var is set to the number of attributes
in the item assigned to array. For example, if
the array was dimensioned for 100 elements and the
item read in was only 12 attributes long, var
would be set to 12.

Trailing, null attributes in the file item are
counted, because they were assigned to the element
array.

If a nonexistent item is specified, the ELSE
clause is executed.

If the number of attributes in the item is less
than the dimensioned size of the array, the
remaining elements are assigned null values. If
it is greater than the size of the array, the
remainder of the item is assigned to the last
dimensioned array element.

MATREAD ITEM FROM Fl,'AB-123' ELSE STOP

Reads item 'AB-123' from file Fl into array ITEM.
IF AB-123 does not exist, the program terminates.

DIM ITEM(20)
OPEN 'LOG' TO F1 SETTING K ELSE STOP
MATREAD ITEM FROM Fl, 'TEST' ELSE STOP

Reads the item named TEST from the data file LOG
and assigns the string value of each attribute to
consecutive elements of array ITEM. K is set to
the number of attributes read in.

4-75

DATA/BASIC Statements

MATREADU

Purpose

Syntax

COIlDDents

Examples

4-76

MATREADU locks a specific item in a file prior to
updating it.

MATREADU array FROM {file-var,} item-id, {SETTING
var} {LOCKED statement(s)} THEN/ELSE

MATREADU works the same way as the MATREAD
statement, except that it locks the item to be
updated. This prevents an item from being updated
by two or more items simultaneously.

Other processors which encounter an item lock are
suspended until the item becomes unlocked, unless
the optional LOCKED clause is specified. If it
is, the statements following LOCKED are executed.

The item can be unlocked in any of the following
ways:

The process which has the item locked completes
its update.

The program is terminated.

A RELEASE statement is issued.

The item is written back to the file with a
MATWRITE statement (without the optional U).

The number of item locks is user-defined.

MATREADU ARRI FROM X, ITEM3 ELSE GOTO 120

Reads ITEM3 from file X into array ARRI or, if
ITEM3 does not exist, transfers control to
statement 120.

MATREADU ARRAY FROM FILl, "REC" SETTING K ...

LOCKED PRINT "CANNOT ACCESS" ELSE STOP

Reads item REC from file FILl and sets K to the
number of items read in. If REC cannot be read,
error message displays and program terminates.

87-1360

MATWRITE

Purpose

Syntax

Comments

Examples

87-1360

DATA/BASIC Statements

The MATWRITE statement writes a dimensioned array
to a file item.

MATWRITE variable ON {file-var,} item-id

Variable is the name of the array whose elements
are assigned to item-id.

If a file variable is specified, the item is
written to the file previously assigned to that
file variable via the OPEN statement. Otherwise,
the internal default file variable is used.

If the specified item-id does not exist, a new
item is created.

The number of attributes in the item is determined
by the dimensioned size of the array.

Null trailing vector elements are not written as
null attributes in the file.

Note: MATWRITE no longer issues an error message
when dimensioned array elements contain
attribute marks.

MATWRITE ITEM ON 'AB-123'

Writes the contents of array ITEM to the file
previously opened without a file variable as an
item with an id of AB-123.

DIM I'rEM (10)
OPEN' " 'TEST' ELSE STOP
FOR 1=1 TO 10

ITEM(I)=I
NEXT I
MATWRITE ITEM ON "JUNK"

Writes the contents of ITEM to an item named JUNK
in the file named TEST. JUNK now contains 10
attributes whose string values are 1 through 10.

4-77

DATA/BASIC Statements

MATWRITEU

Purpose

Syntax

Comments

Example

4-78

MATWRITEU works just like the MATWRITE statement,
except that it leaves a previously locked item
locked at the end of the write.

MATWRITEU variable ON {file-var,} item-id

MATWRITEU does not actually lock an item. It
simply does not unlock an item that is already
locked.

FOR 1=1 TO 5
ITEM(I) = I

NEXT I
MATWRITEU ITEM ON "TJUNK"

Writes 10 attributes with values 1 through 10 to
item named TJUNK. If TJUNK was locked before the
write, it remains locked afterwards.

87-1360

NEXT

Purpose

Syntax

Comments

Examples

87-1360

DATA/BASIC Statements

The NEXT statement is used in conjunction with the
FOR statement. NEXT increments the specified
variable by the increment value and determines
where control should pass.

NEXT variable

The variable in the NEXT statement must be the
same as the variable in the FOR statement.

Any statements may appear between a FOR and NEXT
statement, including statements that transfer
control out of the loop. However, no statement
should transfer control into a FOR-NEXT loop,
except for the FOR statement itself.

For more information on FOR-NEXT loops, refer to
the FOR statement.

FOR J=2 TO 11 STEP 3
PRINT J+5

NEXT J

Prints 7, 10, 13 and 16. Each time the loop is
executed, 3 is added to J until the value of J
exceeds 11.

FOR K=lO TO 1 STEP -1

NEXT K

Passes through loop 10 times. Each time the value
of K is decreased by 1.

LIMIT = 1
FOR VAR= 0 TO LIMIT STEP .1

NEXT VAR

Passes through loop 11 times, and value VAR is
increased by .1 each time.

4-79

DATA/BASIC Statements

NULL

Purpose

Syntax

Comments

Examples

4-80

The NULL statement specifies no operation. It is
used anywhere a DATA1BASIC statement is required,
but no operation is desired.

NULL

A NULL statement may be used- anywhere in a program
where a DATA/BASIC statement is required.

10 NULL

Results in no operation; however, because it has a
statement label, it may be used as an entry point
for a GOTO or GOSUB statement.

IF A=O THEN NULL ELSE
PRINT "A NONZERO"
GOSUB 45
STOP
END

Executes the statements in the ELSE clause if the
value of A is nonzero. If A=O, no action is taken
and control passes to the statement following END.

READ A FROM "ABC" ELSE NULL

Reads file item ABC and assigns it to variable A.
If ABC does not exist, no action is taken.

IF Xl MATCHES "9N" ELSE GOTO 100

Branches to statement 100 if the current value of
Xl does not contain 9 numeric characters. If it
does, then no action is taken and control passes
to the next sequential statement.

87-1360

ON GOSUB

Purpose

Syntax

Connnents

.Examples

87-1360

DATA/BASIC Statements

ON GOSUB transfers control to an internal
subroutine determined by the current value of the
given expression.

ON expression GOSUB statement-label {,statement­
label ... }

The ON GOSUB statement evaluates the expression
and truncates it to an integer value. Control is
then transferred to the statement-label whose
number equals the value of the expression.

If the expression evaluates to less than one, the
following message displays and the branch is taken
to the first statement label:

[B22] BRANCH INDEX OF x IS ILLEGAL;
BRANCH TAKEN 'ID FIRST STATEMENl'-LABEL!

If the expression exceeds the number of statement
labels in the list, the following message displays
and the branch is taken to the last statement
label:

[B23] BRANCH INDEX OF x EXCEEDS NUMBER OF STATEMENT-LABELS;
BRANCH TAKEN 'ID ~ STATEMENI'-LABEL!

The RETURN statement returns control to the
statement immediately following the ON GOSUB
statement that called the subroutine.

The RETURN TO statement returns control to a
specific statement specified by statement-label.

ON X+Y GOSUB 101, 117, 103, 216
PRINT Y

Transfers control to the internal subroutine with
statement label 101, 117, 103 or 216, depending on
whether the value of X+Y is 1, 2, 3 or 4.

ON Z GOSUB 20, 20, 29
INPUT A

Transfers control to label 20 if Z <= 2, or to
label 29 in all other cases. The system prompts
for input when control returns via a RETURN or
RETURN TO statement.

4-81

DATA/BASIC Statements

ON GOSUB (Continued)

4-82

IF T GE 1 AND T LE 3 THEN
ON T GOSUB 110, 120, 130
END

The IF statement guarantees that T is in the range
of the computed GOSUB statement.

87-1360

ON GOTO

Purpose

Syntax

Comments

Examples

87-1360

DATA/BASIC Statements

The ON GOTO statement transfers control to a
statement-label selected by the current value of
expression.

ON expression GOTO statement-label {,statement­
label. .. }

ON GOTO evaluates the expression and truncates it
to an integer value. Control is then transferred
to the statement-label with the corresponding
value.

If the expression evaluates to less than one, the
following message displays and the branch is taken
to the first statement label:

[B22] BIWOI INDEX OF x IS ILLEGAL;
BIWOI TAKEN 'ID FIRST STATEMENT-LABEL!

If the expression exceeds the number of statement
labels in the list, the following message displays
and the branch is taken to the last statement
label:

[B23] BRAOCH INDEX OF x EXCEEDS NUMBER OF STATEMENl'-LABELS;
BRAOCH TAKEN 'ID LAST STATEMENT-lABEL!

Note: The subroutine specified by statement label
does not have to occur after the ON GOTO
statement. It may occur anywhere in the
program.

ON M+N GOTO 40, 61, 5, 7

Transfers control to statement 40, 61, 5 or 7,
depending on whether the value of M+N is 1, 2, 3
or 4.

ON C GOTO 25, 25, 20

Transfers control to statement 25 if C<2, to
statement 20 in all other cases.

4-83

DATA/BASIC Statements

ON GOTO (Continued)

4-84

IF A GE 1 AND A LE 3 THEN
ON A GOTO 110, 120, 130

END

The IF statement assures that A is in the range
for the computed ON GOTO statement.

87-1360

OPEN

Purpose

Syntax

Connnents

Examples

87-1360

DATA/BASIC Statements

The OPEN statement selects a file for subsequent
input, output or update.

OPEN {DICT,} filename {TO file-variable} THEN/ELSE

If DICT is specified, the dictionary portion of
the file is opened. If omitted, the data section
is opened. DICT and filename can be either
literals or variables.

If TO file-variable is specified, the dictionary
or data section of the file is assigned to the
specified variable for subsequent reference. The
file variable can be passed to other programs to
eliminate the need to open a file many times.

If the TO file variable option is omitted, an
internal default file variable is generated.
Subsequent I/O statements not specifying a file
variable then automatically default to this file.

If the specified file does not exist, the ELSE
clause is taken.

If a file is retrieval protected and security
codes do not match, an error message displays and
the program terminates. Files with update
protection may still be opened if update codes do
not match, but any attempt to write to the file
causes an error message to display, and control
transfers to the debugger.

A maximum of 3,224 files can be open at one time.

OPEN 'DICT','QA4' TO F1 ELSE PRINT "NO FILE"; STOP

Opens the dictionary portion of file QA4 and
assigns it to file variable Fl. If QA4 does not
exist, the message NO FILE is displayed and the
program terminates.

OPEN 'ABC' TO 05 ELSE
STOP 201, "ABC"
END

Opens data section of file ABC and assigns it to
variable 05. If ABC does not exist, an error
message displays and the program terminates.

4-85

DATA/BASIC Statements

OPEN (Continued)

4-86

OPEN' , 'TEST' ELSE PRINT "DOES NOT EXIST"; GO 10

Opens data section of file TEST and assigns it to
an internal default file variable. If TEST does
not exist, an error message displays and control
transfers to statement 10.

OPEN 'TEST' ELSE PRINT "DOES NOT EXIST"; GO 10

This example functions identically to the one
above.

87-1360

PAGE

Purpose

Syntax

Connnents

Example

87-1360

DATA/BASIC Statements

The PAGE statement advances the current output
device to the next page and prints the heading
(footing) at the top (bottom) of the page.

PAGE

The PAGE statement is only. valid for print report
zero and only functions if a heading or footing is
in effect.

HEADING="MONTHLY REPORT'L'PAGE'PP'"

PAGE

Current output device advances to top-of-form and
prints MONTHLY REPORT heading.

4-87

DATA/BASIC Statements

PERFORM

Purpose

Syntax

Comments

4-88

The PERFORM statement allows you to use TCL verbs
within a DATA/BASIC program. PERFORM also sends
lists to and from TCL verbs and returns error
message strings to the program.

PERFORM <TCL exp> {PASSLIST {<select-var>}}
{RTNLIST {<select-var>}}
{CAPTURING <var>}
{SETTING <var>}

<TCL exp> is any valid expression containing the
TCL command to be used. The PERFORM statement
makes DATA/BASIC more interactive with the data
base management structure of REALITY systems.
Virtually any statement that may be executed at
TCL may be executed within a DATA/BASIC program
using the PERFORM statement.

Note: Any filename passed to a PERFORMed verb must
be the name of a file in that account, not a
file variable which is the result of an OPEN
statement.

PASSLIST <select-var> specifies the variable which
contains the select list to be passed to the
called processor. Select list must be the result
of a SELECTE or GETLIST statement or the RTNLIST
clause of a previous PERFORM statement. If
PASSLIST is used without a select-var, the default
select variable of that program is used.

RTNLIST <select-var> specifies the variable where
the select list will be returned. If select-var
is omitted, the generated select list replaces the
contents of the default select variable. The
resulting list may be used in a READNEXT statement
or in the PASSLIST clause of a subsequent PERFORM.

CAPTURING <var> specifies an alternate destination
for text that would otherwise be displayed on the
terminal. Each line of output becomes one
attribute in the capturing variable. Output
directed to the printer still goes to the printer.

SETTING <var> specifies the variable where error
messages and their parameters are to be returned.
Each error message is returned as a separate
attribute, and the parameters within it are
separated by value marks. The first value of each
attribute (error message) is the referenced error
message number.

87-1360

DATA/BASIC Statements

PERFORM (Continued)

Examples

87-1360

You can use the SETTING clause to capture the text
of the error message and obtain the parameter
string which caused the error message. (This
variable is truncated at approximately 32,000
bytes.) Each attribute may then be examined or
printed using the PRINTERR statement.

The error message is still sent to the terminal or
printer (or captured) whether or not the SETTING
clause is used.

There is no limit to the number of PERFORM
statements that may be issued in a program, and up
to 32 levels of PERFORM statements may be nested.

The DATA statement is used to specify arguments
that are to be passed to a PERFORMed statement.
The arguments are specified as an ordered list,
separated by commas. Individual arguments must be
less than 140 bytes long. For example:

PERFORM 'SELECT CUST WITH ORDER-DATE <
"4/11/85'" RTNLIST CUST.LIST

DATA "(CUST-HIST"
PERFORM 'COpy CUST' PASSLIST CUST.LIST

STMT = 'SSELECT CUST WITH PAST-DUE BY LASTNAME'
PERFORM STMT RTNLIST LATECUST
LOOP WHILE READNEXT 10 FROM LATECUST DO

REPEAT

Creates a list of customers with late payments
which can then be used throughout the program.

STMT = 'SORT CUST BY DUE-DATE NAME DUE-DATE ...

PAST-DUE (P'
PERFORM STMT PASSLIST LATECUST

Passes the previously assigned list of customers
with late payments to a PERFORMed process.

STMT = "SSELECT CUST WITH PAST-DUE BY LAST-NAME"
ST = "SORT CUST BY DUE-DATE NAME DUE-DATE ...

PAST-DUE (P"
PERFORM STMT RTNLIST
PERFORM ST PASSLIST

4-89

DATA/BASIC Statements

PERFORM (Continued)

4-90

In this example, the list is saved in and passed
from the default list.

GETLIST "LISTNAME" TO INT.LIST.NAME
PERFORM "LIST FILENAME" PASSLIST

INT.LIST.NAME

The GETLIST verb passes the list to the LIST verb
for processing.

ST1="SORT CUST WITH "
ST2="PAST-DUE "
ST3="DUE-DATE "
ST4="BY LAST-NAME"
IF CHOICE = 1 THEN

STMT=ST1:ST2:ST4

PERFORM STMT RTNLIST LATECUST
END ELSE
STMT=ST1:ST3:ST4
PERFORM STMT RTNLIST CUSTDUE

END

This example shows how the TCL exp may be built
separately from the PERFORM statement. Selection
criteria for an ENGLISH statement can be tailored
depending on variables within the DATA/BASIC
program.

The value of CHOICE could be determined by a menu
selection. If the value is 1, the ENGLISH
statement will be SORT CUST WITH PAST-DUE BY LAST­
NAME. If the value is not 1, the ENGLISH
statement will be SORT CUST WITH DUE-DATE BY LAST­
NAME.

87-1360

PRECISION

Purpose

Syntax

Cononents

Examples

87-1360

DATA/BASIC Statements

The PRECISION statement determines the degree of
precision to which all values will be calculated
within a program.

PRECISION n

The value n is the number (from 0 through 6) of
decimal places to which all values are calculated
and to which all values are truncated.

Only one PRECISION statement is allowed in a
program.

If no PRECISION statement is included in a
program, values are calculated to 4 decimal
places.

Programs that pass values via the COMMON statement
and all called subroutines MUST have the same
precision.

Programs that use math functions (e.g., SQRT, EXP,
etc.) should have a precision in the range 3-5.

If the number of decimal places assigned to a
variable is greater than the number specified in
the PRECISION statement, the values are truncated
to the number specified by PRECISION. Rounding
does not take place.

PRECISION 5
PRINT SQRT(5)

Prints 2.23606, because 5 decimal places were
specified by the PRECISION statement.

PRECISION 3
X=9.123456
PRINT X

Truncates X to 3 decimal places and prints 9.123.

4-91

DATA/BASIC Statements

PRECISION (Continued)

PRECISION 3
Y="4.723428"
X=Y
Z=Y+O
PRINT X,Y,Z

Prints 4.723428 as the value· of X and Y and 4.723
as the value of Z.

4-92 87-1360

PRINT

Purpose

Syntax

Comments

Examples

87-1360

DATA/BASIC Statements

The PRINT statement outputs data to the device
selected by the PRINTER statement.

PRINT {ON expression} {print-list}

When PRINTER ON is in effect, ON expression is
used to send output to multiple print reports,
where expression indicates the print report number
(from 1 to 127). If ON expression is omitted,
print report 0 is used.

Print-list may consist of a single expression or a
series of expressions, separated by commas or
colons, used to denote formatting. (For more
information on formatting output, refer to the
next topic, PRINT Using Output Formatting). If
print-list is not specified, a blank line is
printed.

The HEADING statement affects only print report
zero; however, pagination and forms control must
be used for other print reports. This can be done
by keeping track of the number of lines output and
printing top-of-form characters (CHAR(12)) to
start new pages. Lack of pagination results in
continuous printing across page boundaries or in
multiple reports running together.

When PRINTER OFF is in effect, the ON expression
option has no effect.

The contents of all print reports used by the
program, including print report zero, are output
to the printer in sequence when a PRINTER CLOSE is
issued, or when the program terminates.

Direct cursor control and video effects may be
accomplished by using the @ function within the
print-list. The @ function is explained in
Chapter 5.

PRINTER ON
N=50
PRINT ON 24 X
PRINT ON N Y

Outputs value of X to print file 24 and value of Y
to print file 50.

4-93

DATA/BASIC Statements

PRINT (Continued)

PRINTER ON
PRINT ON 10 Fl,F2,F3
PRINT ON 20 M,N,P
PRINT ON 10 F4,F5,F6

Outputs the values of Fl through F6 to print file
10 and M, Nand P to print file 20.

4-94 87-1360

DATA/BASIC Statements

PRINT Using Output Formatting

Purpose

Tabulation

The print-list of the PRINT statement may specify
tabulation or concatenation when printing multiple
items.

Output values may be aligned at tab positions
across the output page by using commas (,) to
separate the print-list expressions. Tab
positions are preset at every 18 character
positions. For example:

PRINT (50*3)+2, A, "END"

If A = 37, this statement prints the values across
the page as follows:

152 37 END

Concatenation Output values can be printed contiguously across
the page by using colons (:) to separate the
print-list expressions. For example, the
following statement prints the message "THE VALUE
OF A IS 5010":

PRINT "THE VALUE OF A IS ":50:5+5

After the entire print-list has been printed, a
carriage return and line feed is executed, unless
the print-list ends with a colon. In that case,
the next value in the next PRINT statement is
printed on the same line in the very next
character position. For example:

PRINT A:B:,C,D:
PRINT E,F,G

These statements produce the same output as the
following statement:

PRINT A:B,C,D:E,F,G

Format Strings The output in a PRINT statement may be formatted
using Format Strings. Format Strings are
explained in Chapter 2.

Examples

87-1360

PRINT A:B:
PRINT C:D:
PRINT E:F

Prints the current value of A, B, C, D, E and F
contiguously across the output page, each value
concatenated to the next.

4-95

DATA/BASIC Statements

PRINT Using Output Formatting (Continued)

PRINT A*100,Z

4-96

Prints the value of A*100 starting at column
position 1; prints the value of Z on the same
line, starting at column position 18 (the first
tab position).

PRINT "ENTER NAME":

Prints the text "ENTER NAME" but does not execute
a carriage return or line feed.

PRINT" ",B

Prints the value of B starting at column position
18.

87-1360

PRINTER

Purpose

Syntax

Comments

Examples

87-1360

DATA/BASIC Statements

The PRINTER statement selects either the user's
terminal or the system printer for subsequent
program output.

PRINTER [ON] [OFF] [CLOSE]

When a PRINTER ON statement is issued, program
output data (specified by subsequent PRINT,
HEADING, FOOTING or PAGE statements) is not
printed immediately, unless immediate printing is
forced via an SP-ASSIGN statement with option I or
N specified. Instead, the data is stored in the
spooler and printed when the program terminates,
or when a PRINTER CLOSE statement is issued.

The PRINTER OFF statement directs subsequent
program output to the terminal.

Once executed, a PRINTER ON or a PRINTER OFF
statement remains in effect until another PRINTER
(ON or OFF) statement is executed. If neither a
PRINTER OFF nor a PRINTER ON statement has been
executed, output is to the user's terminal.

The PRINTER CLOSE statement causes all data
currently stored in the spooler to be printed
immediately. PRINTER CLOSE applies only to output
directed to the line printer.

PRINTER ON
PRINT A
PRINTER OFF
PRINT B

Displays value of variable B on the terminal
immediately. The value of variable A is printed
when the program ends.

PRINTER ON
PRINT A
PRINTER CLOSE
PRINTER OFF
PRINT B

Prints value of variable A immediately. Value of
variable is then displayed on the terminal.

4-97

DATA/BASIC Statements

PRINTERR

Purpose

Syntax

Cononents

Examples

4-98

PRINTERR prints error messages stored in the
system ERRMSG file or in a user-specified file
without exiting DATA/BASIC.

PRINTERR x {FROM file-var}

The value x is any expression that evaluates to a
dynamic array where each parameter is an error
message element, with the first as the item-id.

Error message libraries can be kept separate from
the system ERRMSG file and can be used by
PRINTERR. If the FROM clause is used, PRINTERR
prints the error messages stored in file-var.

OPEN "MYERRS" TO ERRORFILE ELSE STOP 201,"MYERRS"

x = "511":VM:PARAMETER
PRINTERR X FROM ERRORFILE

Prints error message 511 found in the user­
specified file ERRORFILE.

PRINTERR "201":AM:"TESTFILE"

Prints message [201]'TESTFILE' IS NOT A FILE NAME
found in the system ERRMSG file.

87-1360

PROCREAD

Purpose

Syntax

Conunents

Example

87-1360

DATA/BASIC Statements

The PROCREAD statement reads data from the PROC
primary input buffer.

PROCREAD variable ELSE statement(s)

PROCREAD assigns the string value of the PROC
primary input buffer to the variable.

If the program has not been run from a PROC, the
ELSE clause is executed.

This command is particularly useful if attribute
marks are used as delimiters in the PROC, because
then the variable can be manipulated as a dynamic
array.

PROCREAD BUF ELSE
PRINT "MUST EXECUTE FROM PROC"
STOP
END

Assigns string value of PROC primary input buffer
to variable BUF. Message is printed if program
was not executed from a PROC.

4-99

DATA/BASIC Statements

PROCWRITE

Purpose

Syntax

Comments

Example

4-100

The PROCWRITE statement writes data to the PROC
primary input buffer.

PROCWRITE expression

PROCWRITE writes the string value of the
expression to the PROC primary input buffer.

If the program was not executed from a PROC, an
error message is displayed.

This command is especially useful if attribute
marks are used as delimiters in the PROC, because
then the expression can be a dynamic array.

BUF = "LIST":AM:FILE
PROCWRITE BUF

Writes dynamic array BUF to the PROC primary input
buffer. If the program was not executed from a
PROC, no operation takes place.

87-1360

PROMPT

Purpose

Syntax

Comments

Examples

87-1360

DATA/BASIC Statements

The PROMPT statement selects the character which
is used to prompt the user for input.

PROMPT expression

The value of expression becomes the input prompt
character. If expression has more than one
character, only the first character is used.

Once a PROMPT statement has been executed, it
remains in effect until another PROMPT statement
is issued.

If no PROMPT statement has been issued, the INPUT
statement uses a question mark (?) as the default
prompt character.

PROMPT "@"

Specifies that the character @ will be used as the
prompt character for subsequent INPUT statements.

PROMPT 5*5

Selects the digit 2 as the prompt character,
(i.e., 5*5=25 and only the first character is
used) .

PROMPT A

Specifies that the current value of A will be used
as the prompt character.

4-101

DATA/BASIC Statements

READ

Purpose

Syntax

Comments

Examples

4-102

The READ statement reads a file item and assigns
its value, as a dynamic array, to a variable.

READ variable FROM {file-var,} item-id THEN/ELSE

The READ statement reads the file item specified
by item-id and assigns its string value to the
first variable.

If file-var is used, the item is read from the
file previously assigned to the file variable via
an OPEN statement. If filename is omitted, the
internal default file variable is used (i.e., the
file most recently opened without a file
variable) .

If the item-id does not exist, the ELSE clause is
executed.

If the specified file has not been opened prior to
the READ statement, the program aborts with an
error message.

READ Xl FROM W,"TEMP" ELSE PRINT
"NON-EXISTENT"; STOP

Reads the item named TEMP from the file opened and
assigned to file variable W and assigns its string
value to variable Xl. If TEMP does not exist, the
message NON-EXISTENT displays and the program
terminates.

A="TEST"
B="l"

READ X FROM C,(A CAT B) ELSE STOP

Reads item TESTI from file opened and assigned to
file variable C and assigns its value to variable
X. Program terminates if TESTI does not exist.

READ Z FROM "Ql" THEN PRINT X; STOP

Reads item Ql from the file opened without a file
variable and assigns its value to variable Z.
Prints value of X and terminates program if Ql
does not exist.

87-1360

READLIST

Purpose

Syntax

Comments

Examples

87-1360

DATA/BASIC Statements

The READLIST statement reads a list from the
POINTER-FILE and assigns it to a variable for
program manipulation.

READLIST variable FROM list {SETTING var}
THEN/ELSE

Each item-id in list is separated by attribute
marks.

READLIST allows a DATA/BASIC program to read in a
saved list, place the contents in a variable, and
then modify or search its contents.

If you specify the SETTING clause, the list is
assigned to a select list specified by var.

READLIST A FROM ITEMX ELSE STOP

Reads the list in ITEMX into variable A.

READLIST LISTl FROM X ELSE ...

PRINT "CANNOT READ"; STOP

Reads the list from POINTER-FILE X into variable
LIST1. If the list cannot be read, an error
message displays and the program terminates.

READLIST LIST! FROM '60-90' ELSE GOTO 100
READLIST LIST2 FROM 'OVER-90' ELSE GOTO 100
LIST3 = LIST1:AM:LIST2 ; * Combine the lists
WRITELIST LIST3 ON 'OVER-60'

GETLIST 'OVER-60' TO ALIST SETTING ACOUNT THEN
FOR I = 1 TO ACOUNT

READNEXT ID FROM ALIST ELSE PRINT 'ERROR'
READ AITEM FROM AFILE,ID ELSE AITEM = "

NEXT I
END

Reads the lists saved in 60-90 and OVER-90 and
combines them into a new list. The new list is
then written back to the POINTER-FILE using the
WRITELIST statement. This new list can then be
manipulated by the program.

4-103

DATA/BASIC Statements

READNEXT

Purpose

Syntax

Comments

4-104

The READNEXT statement reads the next item-id from
the select list.

READNEXT variable{,variable} {FROM select-var}
THEN/ELSE

READNEXT reads the next item-id and assigns its
string value to the first variable.

The second variable may be used when an exploding
sort has been processed using BY-EXP or BY-EXP­
DSND in a SELECT, SSELECT, GET-LIST or FORM-LIST
statement issued at TCL or in a PROC.

The second variable is assigned the value count
indicating the position of the multivalue within
the attribute specified after the BY-EXP or BY­
EXP-DSND connective.

This value can be used in a dynamic array
extraction after the item has been read (via a
READ statement) to obtain multivalues in exploded
sort order.

If the FROM clause is specified, the item-id is
read from the list assigned to select-var.

If the FROM clause is omitted, the item-id is read
from the last SELECT, SELECTE or GETLIST statement
executed without a TO clause. If none of these
statements have been executed, the item-id comes
from an externally-generated list executed at TCL
immediately before running the program. (Such
lists can be generated by a SELECT, BSELECT,
SSELECT, FORM-LIST, GET-LIST, SEARCH or ESEARCH.)

If the list of item-ids has been exhausted, or if
no selection has been performed, the ELSE clause
is executed.

Note: READNEXT retrieves only item-ids from a
list. In order to retrieve other values
from a list, a READ statement must be
executed following the READNEXT.

The READNEXT statement always returns a 0 or 1,
depending on whether or not it can assign an item­
id from the select list. Therefore, READNEXT can
also be used as the conditional in a LOOP
statement. (Refer to the LOOP statement for more
information.)

87-1360

DATA/BASIC Statements

READNEXT (Continued)

Examples READNEXT 10 ELSE STOP

87-1360

Assigns value of next item-id from the default
select variable to 10. If the list is exhausted,
or if no SELECT, GET-LIST or SELECTE statement has
been executed, and there is no external select
list, the program terminates.

READNEXT VAR1 ELSE PRINT "CANNOT READ"; GO 10

Reads next item-id and assigns its string value to
VAR1. If the list of item-ids has been exhausted,
or if no selections have been performed (either in
the program, at TCL or in a PROC) , the message
CANNOT READ is displayed and control transfers to
statement 10.

FOR X=l TO 10
READNEXT B(X) ELSE STOP

NEXT X

Reads the next ten item-ids and assigns the values
to matrix elements B(l) through B(10).

FOR 1=1 TO 999
READNEXT ITEM.ID, VALUE ELSE STOP
READ ITEM FROM INV,ITEM.ID ELSE NULL
PRINT ITEM<I, VALUE>

NEXT I

Reads and prints multivalues in exploded sort
order.

LOOP WHILE READNEXT 10 FROM SV DO
PRINT 10

REPEAT

Prints all the item-ids in the list SV. The
program terminates when the list is exhausted.

4-105

DATA/BASIC Statements

READT

Purpose

Syntax

Comments

Examples

4-106

The READT statement reads the next record from a
magnetic tape unit. (For more information on tape
handling, refer to the manual titled, Using the
Magnetic Tape System.)

READT variable THEN/ELSE

READT reads the next record and assigns its value
to variable.

If the tape unit has not been attached, or if an
end-of-file mark (EOF) is read, the ELSE clause is
executed.

DATA/BASIC attempts to read a label (if present)
on the first READT command, on the first READT
after a rewind or after sensing an EOF.

The maximum record size that can be read is set by
the T-ATT verb. For example, T-ATT 2048 only
allows reads of 2048 bytes.

The minimum size record that can be read is 20
bytes.

READT X ELSE PRINT "CANNOT READ"; STOP

Reads the next tape record and assigns it to X.
If an EOF is detected or the tape is not attached,
CANNOT READ is printed and the program terminates.

READT B ELSE

END

PRINT "NO GOOD"
GOTO 5

Reads next tape record and assigns its value to B.
If it cannot be read, the message NO GOOD is
printed and control transfers to statement 5.

87-1360

READU

Purpose

Syntax

Comments

Examples

87-1360

DATA/BASIC Statements

READU locks a specific item in a file prior to
updating it.

READU variable FROM {file-var,} item-id, {LOCKED
statement(s)} THEN/ELSE

READU works the same way as the READ statement,
except that it locks the item to be updated. This
prevents an item from being updated by two or more
items simultaneously.

Other processors which encounter an item lock are
suspended until the item becomes unlocked, unless
the optional LOCKED clause is specified. If it
is, the statements following LOCKED are executed.

The item can be unlocked in any of the following
ways:

The process which has the item locked completes
its update.

The program is terminated.

A RELEASE statement is issued.

The item is written back to the file with a
WRITE statement (without the optional U).

The number of item locks is user-defined.

READU ITEM FROM INV, "S5" ELSE GOSUB 4

Locks item S5, then reads S5 to variable ITEM. If
S5 does not exist, control is transferred to
subroutine 4.

READU A FROM FILE!, "REC", LOCKED PRINT ...

"LOCKED" ELSE STOP

Locks item REC in file FILE!, then reads it to
variable A. If REC cannot be read, an error
message is displayed and the program terminates.

4-107

DATA/BASIC Statements

READV

Purpose

Syntax

Comments

Examples

4-108

The READV statement reads an attribute value from
an item and assigns its string value to a
specified variable.

READV variable FROM {file-var,} item-id, attr#
THEN/ELSE

READV reads the attribute specified by attr' from
the item-id and assigns it to variable.

If a file variable is used, the attribute is read
from the file previously assigned to that file
variable via an OPEN statement.

If the file variable is omitted, the internal
default file variable is used (i.e., the file most
recently opened without a file variable).

If the specified item does not exist, the ELSE
clause is executed.

READV A FROM F, "XYZ", 3 ELSE STOP

Reads the third attribute of item XYZ in the file
specified by F and assigns it to variable A. If
XYZ does not exist, the program terminates.

READV X FROM A, "TEST", 5 ELSE

PRINT ERR
GO TO 70
END

Reads the fifth attribute of item TEST (in the
file opened and assigned to variable A) and
assigns its value to variable X. If TEST does not
exist, then the value of ERR is printed and
controls transfers to statement 70.

87-1360

READVU

Purpose

Syntax

Conunents

Example

87-1360

DATA/BASIC Statements

READVU locks a specific item in a file prior to
updating it.

READVU variable FROM {file-var,} item-id, attr#
{LOCKED statement(s)} THEN/ELSE

READVU works the same way as the READV statement,
except that it locks the item to be updated. This
prevents an item from being updated by two or more
items simultaneously.

Other processors which encounter an item lock are
suspended until the item becomes unlocked, unless
the optional LOCKED clause is specified. If it
is, the statements following LOCKED are executed.

The item can be unlocked in any of the following
ways:

The process which has the item locked completes
its update.

The program is terminated.

A RELEASE statement is issued.

The item is written back to the file with a
WRITEV statement (without the optional U).

Note: The number of item locks is user-defined.

READVU ATTR FROM B, "RECORD", 6
LOCKED PRINT "UNABLE TO ACCESS"
ELSE STOP

Locks item RECORD in file B. Reads attribute 6 of
RECORD to variable ATTR or, if RECORD does not
exist, an error message is displayed and the
program terminates.

4-109

DATA/BASIC Statements

RELEASE

Purpose

Syntax

Comments

Examples

4-110

The RELEASE statement unlocks items that have been
locked for update.

RELEASE {{file-variable,} item-id}

Individual items can be unlocked by specifying a
file-variable and item-ide

If a file variable is specified, it represents the
file previously assigned to that file variable via
an OPEN statement.

If a file variable is not specified, the internal
default file variable is used (i.e., the file most
recently opened without a file variable). r

If neither a filename nor an item-id is specified,
RELEASE unlocks all items locked by the program.

RELEASE

Unlocks all items that have been locked by the
program.

RELEASE FI,"RECORD"

Unlocks the item RECORD in the file specified by
Fl.

87-1360

REM

Purpose

Syntax

Comments

Examples

87-1360

DATA/BASIC Statements

The REM (REMARK) statement lets you place comments
anywhere in a program without affecting program
execution.

REM
*

To place a comment in a program, type the letters
REM, an asterisk (*) or an exclamation point (!)
at the beginning of the statement, followed by the
text of your comment.

If a comment does not fit on one line, you must
use two REM statements.

Note: Do not follow a REM with an equal sign (=)
unless the entire string that follows is
enclosed in quotes.

Note: If you use an exclamation point (!) at the
beginning of a comment line (or all by
itself) it causes a line of asterisks to be
printed if the program is listed using the
BLIST verb. If it follows another
DATA/BASIC statement, it is treated as a
normal comment line.

REM These DATA/BASIC statements
REM do not affect program execution.

In this case, two REM statements were necessary to
complete the comment.

IF Y < 2 GO 10 ; ! Transfers control back to start

Clarifies the operation.

GOSUB 30

30 * SUBROUTINE TO PRINT RESULTS
PRINTER ON
PRINT ...

Identifies the subroutine at statement label 30.

4-111

DATA/BASIC Statements

RETURN

Purpose

Syntax

Comments

Examples

4-112

The RETURN statement transfers control from a
subroutine back to the main program.

RETURN {TO statement-label}

RETURN transfers control from a subroutine back to
the statement immediately following the GOSUB
statement that called it.

RETURN TO transfers control from the subroutine to
the statement with the specified statement-label.

If the statement label does not exist, an error
message is displayed at compile time.

Every subroutine must return to the calling
program by using a RETURN or RETURN TO statement,
not a GOTO statement. This will ensure proper
flow control.

GOSUB 15
PRINT "BACK FROM SUBROUTINE"

15 * SUBROUTINE XYZ

RETURN

Control returns to the PRINT statement following
the GOSUB that originally called the subroutine.

10 GOSUB 50

PRINT "SUBROUTINE EXECUTION COMPLETE"

50 * SUBROUTINE HERE

IF ERROR RETURN TO 99
75 RETURN
99 PRINT "ERROR ENCOUNTERED HERE"; STOP

If an error occurs in the subroutine, control
transfers to label 99, an error message is
displayed and the program terminates. Otherwise,
control is returned to the statement following the
GOSUB that called the subroutine.

87-1360

REWIND

Purpose

Syntax

Connnents

Example

87-1360

DATA/BASIC Statements

The REWIND statement rewinds the magnetic tape
unit to the Beginning-Of-Tape mark (BOT).

REWIND THEN/ELSE

If the tape unit has not been attached, the ELSE
clause is executed.

REWIND ELSE STOP

Tape is rewound to BOT. If tape unit is not
attached, the program terminates.

4-113

DATA/BASIC Statements

RQM

Purpose

Syntax

Comments

Examples

4-114

The RQM (SLEEP) statement causes a program to
sleep for a specified period of time, terminating
the program's current timeslice.

[RQM] [SLEEP] {expression}

Expression may be either the" number of seconds to
sleep or a wakeup time specified in 24-hour
format. If expression is omitted, the default is
one second.

If 24-hour format is used, the wakeup time must be
enclosed in quotes.

* PROGRAM SEGMENT TO SOUND TERMINAL BELL
* FIVE TIMES
*
EQU BELL TO CHAR(7)
FOR 1=1 TO 5

PRINT BELL:
RQM

NEXT I
END

Sounds terminal bell five times, pausing long
enough so bell is heard as five discrete beeps.

SLEEP "12:11"

Causes the program to sleep until 12:11 PM.

RQM 10

Causes program to sleep for 10 seconds.

X = "13:22:56"
SLEEP X

Program will sleep until 1:22:56 PM.

87-1360

SELECT

Purpose

Syntax

Comments

81-1360

DATA/BASIC Statements

SELECT builds a list of item-ids for the READNEXT
statement.

SELECT [{file-var}] [{variable}] {TO select-var}

SELECTE {TO select-var}

If file-var is used, the list of item-ids is
created for the file previously opened to that
file variable via the OPEN statement.

If file variable is omitted, the internal default
file variable is used, (i.e., the file most
recently opened without a file variable).

When the TO clause is specified, the select list
is assigned to a special type of variable called a
select variable. Select-var is used in the FROM
clause of a READNEXT statement to access the item­
ids from that list.

If a normal string variable is specified, rather
than a file variable, each attribute, value or
subvalue in the string becomes an item-id in the
list.

The SELECTE statement selects a list generated
externally by any of the following: SELECT,
BSELECT, SEARCH, ESEARCH, SSELECT, FORM-LIST or
GET-LIST command executed at TCL. If SELECTE is
used, it must be executed before any other SELECT
or READNEXT statements.

Note: Any file or variable may be selected any
number of times and used independently.
This can be done to have several pointers
into a list at the same time.

DATA/BASIC selects item-ids one group at a time as
needed, rather than all at once as in ENGLISH.
Therefore, if you change an item's id, it could be
selected again. For this reason, if you are
adding items or changing item-ids, you should
perform an ENGLISH SELECT statement prior to
executing the program.

4-115

DATA/BASIC Statements

SELECT (Continued)

Examples OPEN 'BP' ELSE STOP
SELECT

10 READNEXT ID ELSE STOP
PRINT ID
GOTO 10

Selects BP as the default file variable and
assigns the first item-id in BP (in hash order) to
ID. Loops back to statement 10 until all the
item-ids found in the file BP are printed.

OPEN 'CUST' TO CUSTF ELSE STOP 201

SELECT CUSTF TO CUSTLIST
READNEXT ID FROM CUSTF THEN

FOUND = 1 ELSE FOUND = 0

Selects the CUST file and assigns it to CUSTLIST.
Assigns the first item-id from the CUST file (in
hash order) to 10.

SELECTE TO EXTERNAL
READNEXT ID FROM EXTERNAL ELSE ...

PRINT 'NO ':ID; GO 10
END

Assigns the external select list to EXTERNAL.
Assigns the first item-id from the external select
list to ID.

X = 'B' :VM: 'C' :VM: '0' :VM: 'E1' :VM: 'E2' :VM: 'E3'

ATTR4 = X<4>
SELECT ATTR4 TO VMLIST
READNEXT ID FROMVMLIST THEN

READ ITEM FROM CUSTF,ID ELSE ITEM=' ,
END ELSE ITEM=' ,

Assigns the list E1, E2, E3 to VMLIST. Assigns
the string E1 to ID.

4-116 87-1360

SHARE

Purpose

Syntax

Comments

Examples

87-1360

DATA/BASIC Statements

The SHARE statement allows multiple programs to
share a single copy of constant data.

SHARE variable WITH list-name {account-name}

Variable is a simple variable or a subscripted
array element and list-name is the name of the
cataloged item. Account-name can be used to share
data that was cataloged from a different account.

Allowing programs to share data makes them more
efficient. Less workspace is used, which results
in fewer frame faults and increased performance.

SHARE is typically used to allow programs to share
copies of tables, item-lists, parameters and
compiled screen definition items. Only data that
remains constant may be shared.

Data that is to be shared must first be cataloged
via the SHARE verb. This places a pointer in the
form account-name*c*list-name in the system
POINTER-FILE.

The syntax of the SHARE verb is:

SHARE filename item-id

: SHARE TABLES TAX. RATE <RETURN>
[241] 'TAX. RATE , CATALOGED.

DIM TABLE(3)
NAME='TAX.RATE GARY'
SHARE TABLE(2) WITH NAME
DAY.NUM=DATE()-ICONV("1JAN":

FIELD(ICONV(TIMEDATE(),
"02")," ",3),"0")+1

PRINT ~ABLE(2)<DAY.NUM>
END

Item TAX.RATE in file TABLES is cataloged with the
SHARE verb. Array TABLE is dimensioned. TAX. RATE
on GARY is assigned to NAME, and the table is
shared as TABLE(2). Calculates the day number and
prints the corresponding tax rate.

4-117

DATA/BASIC Statements

SHARE (Continued)

4-118

:SSELECT INV WITH QTY < "50" <RETURN>
20 ITEMS SELECTED.

:SAVE-LIST LOW.INV <RETURN>
[241] 'LOW.INV' CATALOGED.

:COPY-LIST LOW.INV <RETURN>
:TO (DICT INV)

:SHARE DICT INV LOW.INV <RETURN>
[241] 'LOW.INV' CATALOGED

SHARE LIST WITH "LOW.INV"
FOR 1=1 TO 9999 WHILE LIST # ""

IF LIST<I> = "" THEN STOP
PRINT I,LIST<I>

NEXT I
END

The SSELECT statement forms the item-list. SAVE­
LIST saves the item-list, which is then copied to
the file item with the COPY-LIST verb. The item­
list is cataloged with the SHARE verb. The
subsequent DATA/BASIC program assigns the item­
list to variable LIST. This program prints
sequential numbers followed by their corresponding
item-ids.

87-1360

SLEEP

Purpose

87-1360

DATA/BASIC Statements

The SLEEP statement is identical to the RQM
statement. For information regarding the SLEEP
statement, please refer to the explanation of the
RQM statement.

4-119

DATA/BASIC Statements

STOP

Purpose

Syntax

Comments

4-120

The STOP statement halts execution of a DATA/BASIC
program.

STOP {message-id {,expression ... }}

The optional message clause displays messages from
the system ERRMSG file or a message you create.
(See Example 2.)

Message-id is an expression containing the item-id
of a message found in the system ERRMSG file.
This message is printed when the STOP is executed.

Expression may contain variables, functions,
arithmetic statements or literal strings used as
parameters to be printed in the message. They are
processed on a first-in first-out basis.

The following codes determine the format of the
messages:

C Clear screen.
H literal string
L

Print literal string.
Output carriage return/line
feed.

L(n) Output n carriage returns/
line feeds.

E {literal string} Enclose message-id in
brackets. Follow with
optional literal string.
Output next parameter.
Output next parameter left­
justified in a field of n
blanks.

A
A(n)

R(n)

S(n)

T
D

Output next parameter
right-justified in a field
of n blanks.
Output n spaces, counting
from the beginning of the
line.
Print system time.
Print system date.

Notes: Carriage returns/line feeds are not
processed automatically, so you must state
them explicitly within the ERRMSG item.

Messages supplied with the system may
change from time to time with different
software releases, so it is better to
create your own.

87-1360

DATA/BASIC Statements

STOP (Continued)

Examples

87-1360

A=50i B=750; C=235; D=1300
REVENUE = A+B; COST = C+D
PROFIT = REVENUE - COST
IF PROFIT > 1 THEN GOTO 100
PRINT "ZERO PROFIT OR LOSS"
STOP
PRINT "POSITIVE PROFIT"

If PROFIT is less than or equal to 1, ZERO PROFIT
OR LOSS is printed and program execution stops;
otherwise, POSITIVE PROFIT is printed and the
program continues.

OPEN "INV" TO INV
ELSE STOP "T11","INV"

.
ERR="T12"
FOR 1=1 TO 10

ITEM.ID = "A*":I

READ ITEM FROM INV, ITEM.ID
ELSE STOP ERR,ITEM.ID

WRITE ITEM ON TEST,I
NEXT I
END

Item T11 in ERRMSG file Item T12 in ERRMSG file

L (2) L (2)
E COULD NOT FIND H***
A H ITEM
H FILEI R (5)
L H DOES NOT EXIST!
H CHECK FILE L
H DEFINITION! D

L
T

If INV does not exist, the following message is
displayed:

[Tll] COUlD tUl' FIND INV FILE!
CHECK FILE DEFINITION!

If item A*7 is not present, this message is
displayed:

*** ITEM A*T DOES NOT EXIST!
12 NOV 1986
11:35:32

4-121

DATA/BASIC Statements

SUB

Purpose

Syntax

Comments

4-122

The SUB (or SUBROUTINE) statement identifies a
DATA/BASIC program as an external subroutine
called by another DATA/BASIC program.

SUB{ROUTINE} name {(argument-list)}

A DATA/BASIC CALL statement ·transfers control to a
cataloged subroutine name.

The argument-list consists of one or more
expressions, separated by commas, that represent
the values passed to the subroutine. The number
of parameters passed from the CALL statement to
the SUBROUTINE statement must match. If not, an
error message displays and the program enters the
debugger.

An external subroutine must contain a SUBROUTINE
statement, a RETURN statement and an END
statement. SUBROUTINE must be the first statement
in the program.

Only arguments and COMMON variables can be passed
between the calling program and the subroutine.

GOSUB and RETURN combinations may be used in a
subroutine. If a RETURN is executed and there is
no corresponding GOSUB statement, the program
returns control to the statement following CALL in
the calling program.

If a STOP, CHAIN or ENTER statement is executed
before the subroutine's END statement, control
never returns to the calling program.

The CHAIN statement should not be used to chain
from an external subroutine to another DATA/BASIC
program.

The ENTER statement should not be used to execute
a SUBROUTINE.

A calling program and the corresponding subroutine
must have the same precision and both must be
cataloged.

87-1360

DATA/BASIC Statements

SUB (Continued)

Examples

87-1360

CALL REPORT

SUBROUTINE REPORT

Called subroutine REPORT has no parameters.

CALL ADD (A+2,F,395)

SUBROUTINE ADD (X,Y,Z)

Subroutine ADD returns three values.

CALL VENDOR (NAME, ADDRESS, NUMBER)

SUBROUTINE VENDOR (NAME, ADDR, NUM)

Subroutine VENDOR accepts and returns three
values.

4-123

DATA/BASIC Statements

UNLOCK

Purpose

Syntax

Comments

Examples

4-124

The UNLOCK statement resets execution locks.

UNLOCK {expression}

Expression specifies which lock to reset. If
expression is omitted, all execution locks
previously set by the program are reset.

A warning message is displayed if you try to
unlock an execution lock which the program did not
lock.

All execution locks set by a program are
automatically reset when the program terminates.

The TCL verb CLEAR-BASIC-LOCKS can be used to
reset all 256 execution locks. This verb is
present on the SYSPROG account.

UNLOCK

Resets all execution locks previously set by the
program.

UNLOCK 63

Resets execution lock 63.

UNLOCK (5+A)*(B-2)

Resets the execution lock specified by the value
of the expression (5+A)*(B-2).

87-1360

WEOF

Purpose

Syntax

Connnents

Examples

87-1360

DATA/BASIC Statements

The WEOF statement writes an End-Of-File mark
(EOF) to the tape.

WEOF THEN/ELSE

If the tape unit has not been attached, the ELSE
clause is taken.

WEOF ELSE STOP

Writes an EOF mark. If the tape unit is not
attached, the program terminates.

WEOF THEN GOTO 100 ELSE

PRINT "TAPE NOT ATTACHED"
STOP
END

Writes an EOF mark and transfers control to
statement 100. If tape is not attached, displays
message and terminates program.

4-125

DATA/BASIC Statements

WRITE

Purpose

Syntax

Comments

Examples

4-126

The WRITE statement updates a file item.

WRITE expression ON {file-var,} item-id

WRITE replaces the contents of the specified item
with the string value (or dynamic array) of
expression.

If file-var is used, it specifies the file
previously assigned to that variable via an OPEN
statement. If file-var is omitted, the internal
default file variable is used (i.e., the file most
recently opened without a file variable).

If the item-id does not exist, a new item is
created.

If a file is update protected and security codes
do not match, an error message is displayed and
control transfers to the debugger.

Note: The WRITE statement does not delete
trailing attribute marks before filing an
item. If you wish to delete trailing
attribute marks, use the TRIM function.

WRITE "XXX" ON A, "ITEMS"

Replaces the current contents of ITEMS in the file
opened and assigned to variable A with string
value XXX.

A="1234s6789"
B="Xss"
WRITE A ON FN1,B

Replaces the current contents of item XSS in the
file opened and assigned to variable FN1 with
string value 123456789.

WRITE 100*5 ON "EXP"

Replaces the current contents of item EXP in the
file most recently opened without a file variable
with string value 500.

87-1360

WRITELIST

Purpose

Syntax

COlIDRents

Examples

87-1360

DATA/BASIC Statements

The WRITELIST statement writes a string to the
POINTER-FILE as a saved list.

WRITELIST string ON sav-list

Each attribute, value or subvalue in the string is
used as an item-id when th~ sav-list is later
used.

Lists produced by a WRITELIST statement can be
used later in the same program by executing a
GETLIST or a READLIST statement.

READLIST LISTA FROM X
WRITELIST LISTA ON "ITEM"

Reads list from X and assigns it to variable
LISTA. Writes contents of LISTA to the POINTER­
FILE called ITEM.

EQU AM TO CHAR(2S4}
READLIST LIST1 FROM '15-40' ELSE .. .
READLIST LIST2 FROM 'OVER.40' ELSE .. .
LIST3 = LISTl:AM:LIST2
X = 'OVER. 15'
WRITELIST LIST3 ON X
PRINT LIST3

Reads LISTI and LIST2 and combines them into one
list (LIST3). LIST3 is then written to the
POINTER-FILE as a saved list, and its contents are
displayed on the terminal.

A = "ITEMl": AM: "ITEM2" : AM: " ITEM3"
WRITELIST A ON "ITEMS"

:GET-LIST ITEMS

3 ITEMS SELECTED
>

Writes contents of A to POINTER-FILE called ITEMS.
The list can later be retrieved with a GET-LIST
command issued at TCL or with a GETLIST or
READLIST statement executed in the same program.

4-127

DATA/BASIC Statements

WRITET

Purpose

Syntax

Comments

Examples

4-128

WRITET writes a record to tape.

WRITET expression THEN/ELSE

The string value of expression is written as the
next record on the tape.

If the tape unit has not been attached, or if the
string value of expression is a null string, the
ELSE clause is executed.

DATA/BASIC writes a label when the first WRITET
statement is executed or when a WRITET is executed
after a rewind or after an EOF has been written.

The T option on the RUN verb inhibits writing the
tape label to ensure compatibility with previous
releases and other devices.

The maximum record size for systems with 32K bytes
or more of main memory is 8192 bytes. For systems
with less than 32K bytes of memory, maximum record
size is 4096.

Given the above constraints, the maximum record
size that can be written to tape can be controlled
by the T-ATT verb. For example, T-ATT 2048 sets
the maximum record size written to 2048.

When writing, records are padded to 20 bytes with
segment marks. They are deleted when read.

WRITET A+S THEN PRINT "WRITTEN TO TAPE" ELSE STOP

Writes the value of A+S as the next record on tape
and prints WRITTEN TO TAPE on the terminal. If
the tape unit is not attached or if A+S is a null
value, the program terminates.

FOR 1=1 TO 5
WRITET A(I) ELSE STOP

NEXT I

Writes the values of array elements A(1) through
A(S) onto 5 tape records. If one of the array
elements has a value of " (null) or if the tape
unit is not attached, the program terminates.

87-1360

WRITEU

Purpose

Syntax

Comments

Examples

87-1360

DATA/BASIC Statements

The WRITEU statement functions just like the WRITE
statement, except that it leaves a previously
locked item locked at the end of the write.

WRITEU expression ON {file-var,} item-id

Note: WRITEU does not actually lock an item. It
simply does not unlock an item that is
already locked.

WRITEU "XYZ" ON FILEA, ITEM4

Replaces the current contents of ITEM4 in FILEA
with the string XYZ. If ITEM4 was locked
previously, it remains locked after the write.

WRITEU 20*4 ON "REC"

Replaces the current contents of item REC in the
file most recently opened without a file variable
with string value 80. If RECwas already locked,
it remains locked after the write.

4-129

DATA/BASIC Statements

WRITEV

Purpose

Syntax

Comments

Examples

4-130

The WRITEV statement updates an attribute value in
a file.

WRITEV expression ON {file-var,} item-id, attr#

WRITEV replaces the value of attrl in the item-id
with the value of expression.

If file-var is specified, it represents the file
previously assigned to that variable via an OPEN
statement. If file-var is omitted, the internal
default file variable is used (i.e., the file most
recently opened without a file variable).

If the specified item or attribute is nonexistent,
a new item or attribute is created.

If the specified file has not been opened prior to
executing the WRITEV, or if an attribute of less
than one is specified, an error message displays
and the program terminates.

Note: WRITEV does not delete trailing attribute
marks before filing an item. To delete
trailing attribute marks, use the TRIM
function.

X I = "XXX"
WRITEV Xl ON A2, "ABC", 4

Replaces the fourth attribute of item ABC in the
file opened and assigned to variable A2 with the
string value XXX.

Z=2
Y="THIS IS A TEST"
WRITEV Y ON X, "PROG", Z+3

Replaces attribute 5 of item PROG in the file
opened and assigned to variable X with the string
value "THIS IS A TEST".

WRITEV "XYZ" ON "A7" , 4

Replaces attribute 4 of item A7 in the file most
recently opened without a file variable with the
string value XYZ.

87-1360

WRITEVU

Purpose

Syntax

Comments

Examples

87-1360

DATA/BASIC Statements

WRITEVU works the same as the WRITEV statement,
except that it leaves a previously locked item
locked at the end of the write.

WRITEVU expression ON {file-var,} item-id, attr#

Note: WRITEVU does not actually lock an item. It
simply does not unlock an item that is
already locked.

Z=2
A="TESTING PROGRAM A"
WRITEVU A ON FIL2,' "PROG", Z+ 1

Replaces attribute 3 of item PROG in file FIL2
with the string value TESTING PROGRAM A. If PROG
was locked before this write, it remains locked
afterward.

WRITEVU "ABC" ON "ITEMA", 8

Replaces attribute 8 of ITEMA in the file most
recently opened without a file variable with the
string value ABC. If ITEMA was already locked, it
remains locked after the write.

4-131

87-1360

Chapter 5
DATA/BASIC Intrinsic Functions

Overview •
String/Substring Manipulation
Math Functions
Format Conversions
Time and Date
I/O Conversions
Numeric Capabilities
Logical Capabilities . .
Bit Manipulation
Manipulating Dynamic Array Elements . . .
Miscellaneous Functions . . .
@ ••• • • • • • • • • • •
ABS
ALPHA
ASC I I
BITCHANGE . . .
BITCHECK
BITLOAD
BITRESET .
BITSET .
CHANGE .
CHAR ...
CHECKSUM
COL1/COL2
COS
COUNT
DATE .
DCOUNT
DELETE
DQUOTE
EBCDIC
EXP
EXTRACT
FIELD
GETMSG
GROUP
ICONV
INDEX
INSERT
INT
LEN
LN
MAXIMUM
MINIMUM
MOD
NOT
NUM
OCONV
PWR .. .
REM . . .
REPLACE

5-3
5-3
5-4
5-4
5-4
5-4
5-4
5-5
5-5
5-5
5-6
5-7
5-11
5-12
5-13
5-14
5-15
5-16
5-17
5-18
5-19
5-20
5-21
5-22
5-23
5-24
5-25
5-26
5-27
5-29
5-30
5-31
5-32
5-33
5-34
5-35
5-36
5-37
5-38
5-40
5-41
5-42
5-43
5-44
5-45
5-46
5-47
5-48
5-50
5-51
5-52

5-1

DATA/BASIC Intrinsic Functions

5-2

RND
SEQ
SIN
SPACE
SPOOLER
SQRT
SQUOTE .
STR
SUMMATION
SYSTEM .
TAN
TIME . .
TIMEDATE
TRIM ..
UNASSIGNED

5-54
5-55
5-56
5-57
5-58
5-59
5-61
5-62.
5-63
5-64
5-68
5-69
5-70
5-71
5-72

87-1360

Overview

String/
Substring
Manipulation

87-1360

DATA/BASIC Intrinsic Functions

This chapter contains a brief summary of the
DATA/BASIC functions, grouped together by their
logical function. Following the summary is a
complete description of each function in
alphabetical order.

CHANGE

CHECKSUM

COLI

COL2

COUNT

DCOUNT

FIELD

INDEX

LEN

SPACE

STR

TRIM

Replaces a substring with a new
string.

Returns the positional checksum of the
specified string.

Returns the numeric value of the
column position immediately preceding
the substring specified by the FIELD
function.

Returns the numeric value of the
column position immediately following
the substring specified by the FIELD
function.

Counts the number of times a substring
occurs within a string.

Counts the number of elements in a
string, which are separated by a
specified delimiter.

Returns a substring from within the
specified string.

Searches a string for a specified
substring and returns the starting
column position of that substring.

Determines the length of a string.

Generates a string value containing a'
specified number of blank spaces.

Generates a string value containing a
specified number of occurrences of a
string.

Removes unnecessary blank spaces from
a specified string.

5-3

DATA/BASIC Intrinsic Functions

Math
Functions

Format
Conversions

Time and
Date

I/O
Conversion

Numeric
Capabilities

5-4

COS

EXP

LN

MOD

PWR

REM

SIN

SQRT

TAN

ASCII

CHAR

EBCDIC

SEQ

DATE

TIME

TIMEDATE

ICONV

OCONV

ABS

Calculates the cosine of an angle.

Raises 'e' to a specified value.

Calculates logarithms to base e.

Calculates the modulo of two
expressions.

Calculates a variable raised to a
power.

Calculates the modulo of two
expressions.

Calculates the sine of an angle.

Calculates the square root of an
expression.

Calculates the tangent of an angle.

Converts a string value from EBCDIC to
ASCII.

Converts a specified numeric value to
its corresponding ASCII character
string value.

Converts a string value from ASCII to
EBCDIC.

Converts an ASCII character to its
corresponding numeric value.

Returns a string value containing the
internal system date.

Returns the internal time of day.

Returns the current time and date in
external format.

Performs input conversions like those
used in ENGLISH.

Performs output conversions like those
used in ENGLISH.

Generates the absolute (positive)
numeric value of an expression.

87-1360

Logical
Capabilities

Bit
Manipulation

INT

RND

ALPHA

NOT

NUM

BITCHANGE

BITCHECK

BITLOAD

BITRESET

BITSET

Manipulating DELETE
Dynamic Array
Elements

EXTRACT

INSERT

MAXIMUM

MINIMUM

REPLACE

SUMMATION

87-1360

DATA/BASIC Intrinsic Functions

Returns an integer value.

Returns a random number.

Searches for alphabetic characters in
a string.

Returns the logical inverse of the
specified expression.

Determines the data type of the
specified expression.

Toggles the state of the specified bit
and returns the value of the bit
before it was changed.

Returns the current value of the
specified bit.

Assigns values to the entire bit table
or retrieves the current value of the
entire table.

Resets the value of the specified bit
to 0 and returns the value of the bit
before it was changed.

Sets the value of the specified bit to
1 and returns the value of the bit
before it was changed.

Deletes an attribute, value or
subvalue from a dynamic array.

Extracts an attribute, value or
subvalue from a dynamic array.

Inserts an attribute, value or
subvalue into a dynamic array.

Returns the maximum numeric element in
a specified dynamic array.

Returns the minimum numeric element
found in the specified dynamic array.

Replaces an attribute, value or
subvalue in a dynamic array.

Returns the sum of all elements of a
dynamic array.

5-5

DATA/BASIC Intrinsic Functions

Miscellaneous @
Functions

Sets the cursor to a specified
position on the terminal or printer.
@ is also used to generate video
effects characters.

DQUOTE Returns a specified string surrounded
by double quotes.

GETMSG Retrieves messages installed in the
system denationalization language
tables.

GROUP Performs group extractions with any
delimiter specified as the group
separator.

SPOOLER Returns spooler status information.

SQUOTE Returns the specified string enclosed
in single quotes.

SYSTEM Retrieves the current state of various
system elements.

UNASSIGNED Determines whether or not a value is
assigned to a variable.

5-6 87-1360

@

Purpose

Syntax

Conunents

Extended
Cursor
Addressing

87-1360

DATA/BASIC Intrinsic Functions

The @ function used with the PRINT statement sets
the cursor to a specified position on the terminal
or printer and used with the CRT statement sets
the cursor to a specified position on the
terminal. The @ function is also be used to
generate video effects characters.

@(column-exp{,line-exp})
@(-exp)

@(column-exp) sets the cursor to the column
specified by the expression, on the current line.

@(-exp) generates an extended cursor addressing
code or a video effects code.

Line-exp specifies a different line number on
which to position the cursor.

Values of the expressions must be within the row
and column limits defined by page width and depth
set by the most recent TERM verb.

The left-most column is numbered column 0; the top
line is numbered line O. Therefore, if the
terminal screen is 80 columns wide, the columns
are numbered 0 thru 79.

The @ function may not be used to format spooled
printer output.

The @ function may appear anywhere that a legal
expression is allowed, including assignment
statements. For example:

START = @(10,1)

PRINT START:"text ... "

If a Matrix printer is being used, the matrix
parameter must be set to 1 via the TERM verb.
Rows and columns start at zero on the terminal and
one on the Matrix printer. Matrix converts zero
addresses to one.

In order to provide a consistent way of emitting
terminal-independent character strings (clear-to­
EOL, etc.), DATA/BASIC supports an extended cursor
addressing process. The @ function allows a
single, negative parameter which returns the
correct cursor control string for the terminal
defined by TERMTYPE. The returned string is based
on the following parameters:

5-7

DATA/BASIC Intrinsic Functions

@ (Continued)

Example

5-8

-1 Clear screen sequence.
-2 Cursor-home sequence.
-3 Clear-to-end-of-screen sequence.
-4 Clear-to-end-of-line sequence.
-5 Reserved.
-6 Reserved.
-7 Reserved.
-8 Reserved.
-9 Cursor-back sequence.
-10 Cursor-up sequence.
-11 Cursor on.
-12 Cursor off.
-13 Status line on.
-14 Status line off.
-15 Cursor forward.
-16 Cursor down.
-17 Slave port on.
-18 Slave port off.
-19 Screen dump.

The clear screen sequence includes the number of
pad characters specified in the FF DELAY field of
the TERM setting.

Different terminal types are indicated by changing
the TERMINAL parameter (#8) of the TERM statement.
The following types are defined.

o PRISM I and II
1 Microdata Scribe
2 ADDS Viewpoint
3 Invalid. (This setting should be used when

an unknown or hardcopy device is being
used. This setting causes all cursor
control requests to be sent as a carriage
return/line feed.)

4 PRISM IV and V
5 Visual VT52

These settings also indicate whether or not the
terminal handles visual mode characters; Types 4
and 5 are set to YES. Terminal parameter #8
should be set to 4 for PRISM 7 terminals.

HEAD = @(35,0):"MAIN MENU":@(35,1):STR("-",9)
PRINT @(-I),HEAD

Clears the screen and prints heading at the top of
screen starting at the 35th column.

87-1360

DATA/BASIC Intrinsic Functions

@ (Continued)

Video Effects Table 5.1 lists the video effects that can be
achieved using the @ function.

-128
-129
-130
-131
-132
-133
-134
-135
-136
-137
-138
-139
-140
-141
-142
-143
-144
-145
-146
-147
-148
-149
-150
-151
-152
-153

87-1360

These codes send an eight-bit character to the
terminal. In order to receive an eight-bit
character, the PCI SETTING (TERMINAL Parameter
#10) must be set to 78. The normal configuration
is a setting of 74 for a seven-bit character.

The video effects can also be achieved by using
the code (without the minus sign) as the value in
a CHAR() function. PRINT CHAR(130) is the same as
PRINT @(-130). The same IS NOT true for extended
cursor addressing codes.

All of the video effects shown in Table 5-1 may
not work will all terminals. For instance, the
PRISM 9 does not provide for Dimmed and Blanked
Video while the PRISM 4 and PRISM 7 do not provide
for Bold Video. Consult the appropriate terminal
documentation for complete information.

Table 5-1. Video Effects Codes

Dimmed
Flashing
Flashing Dimmed

Reversed
Reversed Dimmed
Reversed Flashing
Reversed Flashing Dimmed

Blanked
Blanked Dimmed
Blanked Flashing
Blanked Flashing Dimmed
Blanked Reversed
Blanked Reversed Dimmed
Blanked Reversed Flashing
Blanked Reversed Flashing Dimmed

Underlined
Underlined Dimmed
Underlined Flashing
Underlined Flashing Dimmed
Underlined Reversed
Underlined Reversed Dimmed
Underlined Reversed Flashing
Underlined Reversed Flashing Dimmed
Underlined Blanked
Underlined Blanked Dimmed

5-9

DATA/BASIC Intrinsic Functions

@ (Continued)

Table 5-1. Video Effects Codes (Continued)

-154 Underlined Blanked Flashing
-155 Underlined Blanked Flashing Dimmed
-156 Underlined Blanked Reversed
-157 Underlined Blanked Reversed Dimmed
-158 Underlined Blanked Reversed Flashing
-159 Underlined Blanked Reversed Flashing Dimmed
-160 Bold
-161 Bold Dimmed
-162 Bold Flashing
-163 Bold Flashing Dimmed
-164 Bold Reversed
-165 Bold Reversed Dimmed
-166 Bold Reversed Flashing
-167 Bold Reversed Flashing Dimmed
-168 Bold Blanked
-169 Bold Blanked Dimmed
-170 Bold Blanked Flashing
-171 Bold Blanked Flashing Dimmed
-172 Bold Blanked Reversed
-173 Bold Blanked Reversed Dimmed
-174 Bold Blanked Reversed Flashing
-175 Bold Blanked Reversed Flashing Dimmed
-176 Bold Underlined
-177 Bold Underlined Dimmed
-178 Bold Underlined Flashing
-179 Bold Underlined Flashing Dimmed
-180 Bold Underlined Reversed
-181 Bold Underlined Reversed Dimmed
-182 Bold Underlined Reversed Flashing
-183 Bold Underlined Reversed Flashing Dimmed
-184 Bold Underlined Blanked
-185 Bold Underlined Blanked Dimmed
-186 Bold Underlined Blanked Flashing
-187 Bold Underlined Blanked Flashing Dimmed
-188 Bold Underlined Blanked Reversed
-189 Bold Underlined Blanked Reversed Dimmed
-190 Bold Underlined Blanked Reversed Flashing
-191 Bold Underlined Blanked Reversed Flashing Dimmed

5-10 87-1360

ABS

Purpose

Syntax

Conunent

Examples

87-1360

DATA/BASIC Intrinsic Functions

The ABS function generates the absolute (positive)
numeric value of an expression.

ABS(expression)

Any valid DATA/BASIC expression is acceptable.

A 100
B = 25
C = ABS(B-A)

Assigns the value 75 to variable C.

A = ABS(Q)

Assigns the absolute value of variable Q to
variable A.

x = 600
Y = ABS(X-1000)

Assigns the value 400 to variable Y.

5-11

DATA/BASIC Intrinsic Functions

ALPHA

Purpose

Syntax

Comments

Examples

5-12

The ALPHA intrinsic function looks for alphabetic
characters in a string.

ALPHA(expression)

Any valid DATA/BASIC expression is acceptable.

ALPHA returns a 1 (true) if expression is a string
containing only upper and/or lower case alphabetic
characters.

x = "123 WINDSOR AVE."
IF ALPHA(X) THEN PRINT "OKAY" ELSE GO 99

Returns a 0, because string X contains numeric
values. Control transfers to statement 99.

CITY = "London"
IF ALPHA(CITY) THEN PRINT "ALL LETTERS" ELSE STOP

Returns a 1 and prints ALL LETTERS, because CITY
contains only upper and lower case alphabetic
characters.

87-1360

ASCII

Purpose

Syntax

Comments

Examples

87-1360

DATA/BASIC Intrinsic Functions

The ASCII function converts a string value from
EBCDIC to ASCII.

ASCII (expression)

Expression can be any valid DATA/BASIC expression.

This function is useful when reading EBCDIC format
tapes with the READT statement.

READT X ELSE STOP
Y = ASCII(X)

Reads a record from the magnetic tape unit and
assigns the value to variable X. Assigns ASCII
value of record to variable Y.

A = "Z"
B = ASCII(A)
PRINT B

Assigns the ASCII value of variable A to variable
B and prints B.

5-13

DATA/BASIC Intrinsic Functions

BITCHANGE

Purpose

Syntax

Comments

Examples

5-14

The BITCHANGE function toggles the state of the
specified bit and returns the value of the bit
before it was changed.

BITCHANGE(expression)

Expression specifies the bit· to be changed.

BITCHANGE operates on a table of 128 bits,
numbered 1 to 128, unique to each process. Each
bit is available as a two-state flag (i.e., the
value returned by the function is always either
zero or one.)

Because BITCHANGE returns the value of the bit
before it was changed, the function of checking­
and-setting (or resetting) a flag can be
accomplished in one step.

Special functions can be performed by setting
expression to the following values:

-1 Allows access to the system INHIBIT bit
(which controls inhibiting of the BREAK
key) .

-2 Allows access to the system TRSTRFLG bit
(which controls TCL restart).

-3 Allows access to the system RSTRTFLG bit
(which controls BREAK-END restart).

If bit 100 = 0,

x = BITCHANGE(100)
PRINT X

Sets bit 100 to 1 and prints O.

If bit 68 = I,

A = BITCHANGE(68)
PRINT A

Sets bit 68 to 0 and prints 1.

87-1360

BITCHECK

Purpose

Syntax

Comments

Example

87-1360

DATA/BASIC Intrinsic Functions

The BITCHECK intrinsic function returns the
current value of the specified bit.

BITCHECK(expression)

Expression specifies the bit to be checked.

BITCHECK operates on a table of 128 bits, numbered
1 to 128, unique to each process. Each bit is
available as a two-state flag (i.e., the value
returned by the function is always either zero or
one.)

Special functions can be performed by setting
expression to the following values:

-1 Allows access to the system INHIBIT bit
(which controls inhibiting of the BREAK
key) .

-2 Allows access to the system TRSTRFLG bit
(which controls TCL restart).

-3 Allows access to the system RSTRTFLG bit
(which controls BREAK-END restart).

Y = BITCHECK(76)
PRINT Y

If the value of bit 76 was 0, then a 0 is printed.
If the value was 1, then 1 is printed.

5-15

DATA/BASIC Intrinsic Functions

BITLOAD

Purpose

Syntax

Comments

Examples

5-16

The BITLOAD function assigns values to the entire
bit table or retrieves the current value of the
entire table.

BITLOAD({expression})

BITLOAD operates on a table 'of 128 bits, numbered
1 to 128, unique to each process. Each bit is
available as a two-state flag (i.e., the value
returned by the function is always either zero or
one.)

Expression is an ASCII string representing a
hexadecimal value. It is used as a bit pattern to
assign values to the table from left to right.
Assignment stops when the string runs out or when
a non-hex character is encountered. If the string
defines less than 128 bits, the remaining bits in
the table are reset.

If expression is omitted or evaluates to null, an
ASCII hex character string is returned, which
defines the value of the table. Any trailing
zeros in the string are truncated.

x = "AB233FA22AD498BA12348A"
A = BITLOAD(X)

Loads the bit table with the value of ASCII hex
string X. The contents of the bit table will be:

1010 1011 0010 0011 0011 1111 1010 0010
0010 1010 1101 0100 1001 1000 1011 1010
0001 0010 0011 0100 1000 1010 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000

Note the remianing zeroes (reset bits). Only 88 of
the 128 bits were set because only 22 characters
were contained in the input expression.

TABLE = BITLOAD()

Loads variable TABLE with the hexadecimal value of
the bit table.

87-1360

BITRESET

Purpose

Syntax

Comments

Examples

87-1360

DATA/BASIC Intrinsic Functions

The BITRESET function resets the value of the
specified bit to 0 and returns the value of the
bit before it was changed.

BITRESET(expression)

Expression specifies the bit to be reset. If
expression evaluates to zero, all elements in the
table are cleared and the returned value is zero.

BITRESET operates on a table of 128 bits, numbered
1 to 128, unique to each process. Each bit is
available as a two-state flag (i.e., the value
returned by the function is either zero or one.)

Because BITRESET returns the value of the bit
before it was changed, the function of checking­
and-setting (or resetting) a flag can be
accomplished in one step.

Special functions can be performed by setting
expression to the following values:

o Resets the entire table.

-1 Allows access to the system INHIBIT bit
(which controls inhibiting of the BREAK
key) .

-2 Allows access to the system TRSTRFLG bit
(which controls TeL restart).

-3 Allows access to the system RSTRTFLG bit
(which controls BREAK-END restart).

If bit 126 = 0

A = BITRESET(126)
PRINT A

Returns a value of 0 and resets bit 126 to O.
Prints O.

If bit 113 = 1

VALUE = BITRESET(113)
PRINT VALUE

Returns a value of 1 and resets bit 113 to O.
Prints 1.

5-17

DATA/BASIC Intrinsic Functions

BITSET

Purpose

Syntax

Conunents

Examples

5-18

The BITSET function sets the value of the
specified bit to 1 and returns the value of the
bit before it was changed.

BITSET(expression)

Expression specifies the bit· to be set. If
expression evaluates to zero, all elements in the
table are cleared and the returned value is zero.

BITSET operates on a table of 128 bits, numbered 1
to 128, unique to each process. Each bit is
available as a two-state flag (i.e., the value
returned by the function is either zero or one.)

Because BITSET returns the value of the bit before
it was changed, the function of checking-and­
setting (or resetting) a flag can be accomplished
in one step.

Special functions can be performed by setting
expression to the following values:

o Sets the entire table.

-1 Allows access to the system INHIBIT bit
(which controls inhibiting of the BREAK
key) .

-2 Allows access to the system TRSTRFLG bit
(which controls TeL restart).

-3 Allows access to the system RSTRTFLG bit
(which controls BREAK-END restart).

If bit 10 = 1

STATUS = BITSET(10)
PRINT STATUS

Sets the bit to 1 and prints 1.

If bit 48 = 0

J = BITSET(48)
PRINT J

Sets bit 48 to 1 and prints o.

87-1360

CHANGE

Purpose

Syntax

Conunents

Examples

87-1360

DATA/BASIC Intrinsic Functions

The CHANGE intrinsic function lets you replace a
substring with a new substring.

new. str=CHANGE(old. str, old.substr, new.substr)

All occurrences of old.substr in old.str are
replaced by new.substr. The result is new.str.

If old.substr is null, old.str is returned with no
changes.

OLDSTR = "IRVINE, CA 92714"
A = "92714"
B = "92720"
NEWSTR = CHANGE (OLDSTR, A,B)

Replaces substring A (92714) in OLDSTR with
substring B (92720) and assigns the new value to
NEWSTR. NEWSTR contains IRVINE, CA 92720.

x = "31AA42BB53AAA"
Y = "A"
Z = "C"
NEWVALUE = CHANGE(X,Y,Z)

Changes the value of 31AA42BB53AAA to
31CC42BB53CCC.

5-19

DATA/BASIC Intrinsic Functions

CHAR

Purpose

Syntax

Comment

Examples

5-20

The CHAR function converts the specified numeric
value to its corresponding ASCII character string
value.

CHAR(expression)

Expression can be any valid 'DATA/BASIC expression.

VM = CHAR(253)

Assigns the string value of a value mark to
variable VM.

x = 252
SVM = CHAR(X)

Assigns the ASCII string value for a subvalue mark
to variable SVM.

87-1360

CHECKSUM

Purpose

Syntax

Comment

Examples

87-1360

DATA/BASIC Intrinsic Functions

The CHECKSUM intrinsic function returns a number
equal to the positional checksum of the specified
string.

CHECKSUM(expression)

Expression can be any valid DATA/BASIC expression.

CKSUM = CHECKSUM("123")

Returns the positional checksum of string 123.

Y = CHECKSUM(X)
PRINT Y

Prints the positional checksum of string X.

5-21

DATA/BASIC Intrinsic Functions

COLl/COL2

Purpose

Syntax

Comments

Examples

5-22

The COLI and COL2 functions return the numeric
values of the column positions immediately
preceding and following the substring specified by
the FIELD function.

COLI ()
COL2 ()

COLl() returns the numeric value of the column
position immediately preceding the substring
selected by the most recently executed FIELD
function.

COL2() returns the numeric value of the column
position immediately following the substring
selected by the most recently executed FIELD
function.

If a FIELD function has not been executed in a
program before executing a COL1() or COL2()
function, a warning message displays and COL1() or
COL2() is assigned a value of zero.

If the most recent FIELD function delimiter is
null, then COL2() = COL1() + 1. If the specified
delimiter cannot be found in the string, COL2()
returns the number of characters in the string
plus one.

Q = FIELD("ABCBA", "B", 2)
R = COL1 ()
S = COI,.2 ()

Assigns the string value C to variable Q, the
numeric value 2 to variable R and the numeric
value 4 to variable S.

x = "K"
A = FIELD("123K456K789",X,2)
B = COLI ()
PRINT B
C = COL2 ()
PRINT C

Assigns the string value of 456 to variable A.
Assigns the numeric values of 4 to variable Band
8 to variable C. Prints Band C.

87-1360

COS

Purpose

Syntax

Comments

Examples

DATA/BASIC Intrinsic Functions

COS calculates the cosine of an angle.

COS(expression)

Expression must be stated in degrees. The
relation between radians and degrees is:

2 Pi radians = 360 degrees

A = 35
B = COS (A)
PRINT B

Calculates and prints the cosine of 35 degrees.
B = 0.8192

x = 42
SECANT = COS(X) / SIN(X)

Calculates the secant of 4 degrees. SECANT =
1.1105.

87-1360 5-23

DATA/BASIC Intrinsic Functions

COUNT

Purpose

Syntax

Comments

Examples

5-24

The COUNT function counts the number of times a
substring occurs within a string.

COUNT(string,substring)

If the specified substring is not contained in the
string, a value of zero is returned.

If the specified substring is null, the value
returned is equal to the length of the string.

Substrings may overlap in the string. For
example, substring AA occurs three times in string
MM.

M = "SMITH, JOHN"
X = COUNT(M,"H")
PRINT X

Prints 2, because there are two occurrences of the
letter H in string M.

A = "714-854-8388"
B "8"
C = COUNT(A,B)

Assigns a value of 4 to variable C, because
substring B occurs in string A four times.

87-1360

DATE

Purpose

Syntax

Comments

Examples

87-1360

DATA/BASIC Intrinsic Functions

The DATE function returns a string value
containing the internal system date.

DATE()

The internal date represents the number of days
since December 31, 1967.

Internal dates are converted to external form with
the ENGLISH '0' conversion.

Q = DATE()
PRINT Q

Assigns the string value of internal date to
variable Q and prints Q.

WRITET DATE() ELSE STOP

Writes the string value of the current internal
date onto a magnetic tape record. If the tape
unit is not attached, the program terminates.

5-25

DATA/BASIC Intrinsic Functions

DCOUNT

Purpose

Syntax

Comments

Examples

5-26

The DCOUNT function counts the number of elements
in a string, which are separated by a specified
delimiter.

DCOUNT(string,delimiter)

Because DCOUNT returns the number of elements in
the string that are surrounded by the specified
delimiter, it can be used to count the number of
elements in a dynamic array.

If the delimiter is not contained in the string, a
value of 1 is returned.

If the string is null, a value of 0 is returned.

If either string or delimeter is a literal, it
must be enclosed in quotes.

EQU AM TO CHAR(254)
A "123" :AM: "456" :AM: "789"
B = DCOUNT(A,AM)

Assigns a value of 3 to variable B, because there
are three elements separated by attribute marks in
string A.

X
M

""
DCOUNT(X,"/")

Assigns a value of 0 to variable M, because X is a
null string.

A = "THIS.IS.A.TEST"
B = DCOUNT(A,":")

Assigns a value of 1 to variable B, because string
A does not contain the specified delimiter.

87-1360

Purpose

Syntax

Comments

Examples

87-1360

DATA/BASIC Intrinsic Functions

The DELETE function deletes an attribute, value or
subvalue from a dynamic array. DELETE has been
replaced by the DEL statement but is maintained
for compatibility.

DELETE (expression,attr#,value#,subvalue#)

Expression specifies the dynamic array.

If you specify a nonzero value for attr# and a
zero for both the value and subvalue, the entire
attribute is deleted.

If you specify a nonzero value for both attr# and
value' and a zero for the subvalue, then the
specified value is deleted.

If you specify nonzero values for attr#, value#
and subvalue., then the specified subvalue is
deleted.

Note: Refer to the DEL statement in Chapter 4 for
information regarding invalid and illogical
dynamic array references.

OPEN' ','INVENTORY' ELSE STOP
READ VALUE FROM 'ITEM2' ELSE STOP
VALUE = DELETE{VALUE,1,2,3)
WRITE VALUE ON 'ITEM2'

Deletes the third subvalue of the second value of
the first attribute in item ITEM2 in the INVENTORY
file. The delimiter associated with the third
subvalue is also deleted.

OPEN 'TEST' ELSE STOP
READ X FROM 'NAME' ELSE STOP
WRITE DELETE(X,2,O,O) ON 'NAME'

Deletes the second attribute and its associated
delimiter in item NAME in file TEST.

5-27

DATA/BASIC Intrinsic Functions

DELETE (Continued)

X == "ABC]123"DEF]456"GHI]789"
A == "1"
B == "0"
PRINT DELETE(X,A,A-B,B)

Deletes value 1 of attribute 1 in dynamic array X
and prints the result.

5-28 87-1360

DQUOTE

Purpose

Syntax

Comment

Examples

87-1360

DATA/BASIC Intrinsic Functions

The DQUOTE intrinsic function returns a specified
string surrounded by double quotes.

DQUOTE(expression)

Expression can be any valid DATA/BASIC expression.

R = 'X.2S Emulation'
A = DQUOTE(R)
PRINT A

Prints "X.2S Emulation".

x = "TESTING DQUOTE FUNCTION"
Y = DQUOTE(X)

Assigns the string value "TESTING DQUOTE FUNCTION"
to variable Y.

5-29

DATA/BASIC Intrinsic FUnctions

EBCDIC

Purpose

Syntax

Conunents

Examples

5-30

EBCDIC converts a string value from ASCII to
EBCDIC.

EBCDIC(expression)

Expression can be any valid DATA/BASIC expression.

This function is useful when writing EBCDIC format
tapes with the WRITET statement.

x = "1"
Y = EBCDIC(X)
PRINT Y

Prints the EBCDIC value of variable X, which is a
Z.

B = EBCDIC(A)
WRITET B ELSE STOP

Converts the value of string A from ASCII to
EBCDIC and assigns it to variable B. The contents
of B are then written to tape.

87-1360

EXP

Purpose

Syntax

Comments

Examples

87-1360

DATA/BASIC Intrinsic Functions

The EXP function raises 'e' to a specified value.

EXP(expression)

Expression can be any valid DATA/BASIC expression.

No indication is made if overflow occurs.

A = "32"
B = EXP(A)
PRINT B

Prints the value of e raised to 32.

Z = LN(X)
Y = EXP(Z)

Assigns the anti-log of Z to variable Y.

5-31

DATA/BASIC Intrinsic Functions

EXTRACT

Purpose

Syntax

Comments

Examples

5-32

EXTRACT returns an attribute, value or subvalue
from a dynamic array. The EXTRACT function has
been replaced by the dynamic array reference
function described in Chapter 3 but is maintained
here for compatibility.

EXTRACT(expression,attr#,value#,subvalue#)

Expression specifies the dynamic array.

If you specify a nonzero value for attr# and a
zero for both the value and subvalue, the entire
attribute is retrieved.

If you specify a nonzero value for both attr# and
valuel and a zero for the subvalue, then the
specified value is retrieved.

If you specify nonzero values for attr#, value#
and subvaluel, then the specified subvalue is
retrieved.

Note: Refer to Chapter 3, "DATA/BASIC Arrays" for
information regarding invalid and illogical
dynamic array references.

OPEN' ',"TEST" ELSE STOP
READ X FROM 'NAME' ELSE STOP
PRINT EXTRACT(X,3,2,0)

Prints the second value in attribute three of item
NAME in file TEST.

OPEN 'ACCOUNT' ELSE STOP
READ ITEMl FROM 'ITEMl' ELSE STOP
IF EXTRACT(ITEMl,3,2,l)=25 THEN PRINT "MATCH"

Prints MATCH if the first subvalue in the second
value in attribute three in ITEMl equals 25.

87-1360

FIELD

Purpose

Syntax

Comments

Examples

87-1360

DATA/BASIC Intrinsic Functions

The FIELD intrinsic function returns a substring
from within a string.

FIELD{string,delimiter,occurrence)

FIELD returns the substring immediately preceding
the specified delimiter in. the specified string.
Occurrence specifies which substring to return.

If occurrence = 1, FIELD returns the substring
starting from the beginning of the string up to
the first occurrence of the delimiter.

If occurrence = 2, the substring surrounded by the
first and second occurrences of delimiter is
returned.

T = "12345.67891.98765"
G = FIELD{T,".",1)

Returns the substring 12345 to variable G.

A=FIELD("XXX:YYY:ZZZ:555",":",3)

Assigns the value zzz to variable A.

x = "77ABCXX"
Y = "$"
Z = "ABC"

IF FIELD(X,y,2)=Z THEN STOP

Terminates program because the FIELD function
returns the value of ABC which is equal to Z.

5-33

DATA/BASIC Intrinsic Functions

GETMSG

Purpose

Syntax

Comments

Example

5-34

The GETMSG function retrieves messages installed
in the system denationalization language tables.

GETMSG(class-number,message-number)

Class-number is the number of the message class in
the denationalization language table.

Message-number is the number of the message within
the specified class in the denationalization
language table.

This function is used with denationalization.
(For more information, refer to "Appendix G.,
Using Denationalization from DATA/BASIC".)

PRINT GETMSG(l,l)

Prints message 1 in class 1 of the
denationalization language table.

87-1360

GROUP

Purpose

Syntax

Comments

Examples

87-1360

DATA/BASIC Intrinsic Functions

The GROUP intrinsic function is similar to the
group extract conversion (option G of the OCONV
function) except that it allows any delimiter to
be specified as the group separator, including
system delimiters.

GROUP(string,delimiter,start. group,return. group)

Delimiter is the character that separates each
group (element) in string.

Start.group is the number of the first group to
return.

Note: This is different than the OCONV function,
which specifies the number of leading groups
to skip.

Return.group specifies the number of groups to
return. If the number of groups to be returned is
greater than the number of groups in the string,
the specified groups are returned until the string
is exhausted.

CITY = "IRVINE/ORANGE/TUSTIN"
Y = GROUP(CITY,"/",3,2)

Returns the value TUSTIN, because it is the third
element in string CITY (start.group = 3). Only
one element is returned because the string has
been exhausted.

EQU AM TO CHAR(254)
A = "123":AM:"456":AM:"789":AM:"123"
X = GROUP(A,AM,1,2)

Returns the value 123 A 456, because they are the
first two elements in string A.

B = "A/B/C/D/E"
Y = GROUP(B,"/",3,2)

Returns two groups, starting with the third group.
Y now has the value C/D.

5-35

DATA/BASIC Intrinsic Functions

ICONV

Purpose

Syntax

Comments

Examples

5-36

The ICONV function performs input conversions just
like those used in ENGLISH.

ICONV(expression, conversion)

The expression to be converted may not contain any
system delimiters.

Conversion may be any of the following:

D Convert date to internal format. Date
conversion to internal format can also be
accomplished as an output conversion using
the DI conversion.

MC Perform character conversion. (See
Appendix E for a list of mask conversions.)

MD Convert decimal number to integer.

MF Remove commas, decimal points and blanks
from expression.

MP Convert integer to packed decimal.

MT Convert time to internal format.

MX Convert hexadecimal to ASCII.

T Convert by table/file translation. (Do not
use if you need to access several items or
attributes.)

These conversions are formed exactly like ENGLISH
conversions and have the same capabilities.

The conversion must be specified as a string
surrounded by quotes.

PENNIES = ICONV("1234.00","MD2")

Assigns the string value 123400 to the variable
PENNIES.

IDATE = ICONV("7-29-85","D")

Assigns the internal date value 6420 to variable
IDATE.

87-1360

INDEX

Purpose

Syntax

Comments

Examples

87-1360

DATA/BASIC Intrinsic Functions

INDEX searches a string for a specified substring
and returns the starting column position of that
substring.

INDEX(string,substring,occurrence)

INDEX searches for a specified occurrence of a
substring contained in string.

If the substring is not found, a value of zero is
returned.

If the substring is a null string, then the
specified occurrence number is returned.

START = INDEX("ABCDEFGHI","DEF",1)

Assigns the value 4 to the variable START.

A = INDEX("CCXXCCXXCC","XX",2)

Assigns the value 7 to A, because the second
occurrence of substring XX starts at column 7.

VAR = INDEX("ABC123","Z",1)

Assigns a value of 0 to VAR, because Z is not
present in the string ABC123.

X = "1234ABC"
Y = "ABC"

IF INDEX(X,y,1)=5 THEN GOTO 3

Transfers control to statement 3, because ABC
starts at column position 5 of string X.

S = "X1XX1XX1XX"
FOR 1=1 TO INDEX(S,"1",3)

NEXT I

Executes the loop 8 times, because the third
occurrence of 1 appears in column 8 of string S.

5-37

DATA/BASIC Intrinsic Functions

INSERT

Purpose

Syntax

Comments

Examples

5-38

The INSERT function inserts an attribute, value or
subvalue into a dynamic array. INSERT has been
replaced by the INS statement but is maintained
for compatibility.

INSERT(array,attr#,value#,subvalue#,expression)

If you specify a nonzero value for attr# and a
zero for both the value and subvalue, the
specified attribute is inserted into the specified
dynamic array.

If you specify a nonzero value for both attr# and
value# and a zero for the subvalue, then the
specified value is inserted.

If you specify nonzero values for attr#, value#
and subvalue#, then the specified subvalue is
inserted.

Expression is the value to be inserted. It may
not contain any system delimiters.

Note: If the attr#, value# or subvalue# contains
a -1, the value specified by expression is
inserted after the last attribute, value or
subvalue indicated. Otherwise, expression
is inserted before the specified attribute,
value or subvalue.

Refer to the INS statement for information
regarding invalid and illogical dynamic array
references.

OPEN' ','TEST-FILE' ELSE STOP
READ X FROM 'NAME' ELSE STOP
X = INSERT(X,10,0,0, 'XXXXX')
WRITE X ON 'NAME'

Inserts the value XXXXX before attribute 10 of
item NAME, creating a new attribute.

OPEN 'FNl' ELSE STOP
READ B FROM 'ITS' ELSE STOP
A = INSERT(B,-I,O,O, 'EXAMPLE')
WRITE A ON 'ITS'

Inserts the string value EXAMPLE after the last
attribute of item ITS in file FNI.

87-1360

DATA/BASIC Intrinsic Functions

INSERT (Continued)

87-1360

Y=INSERT(X,3,2,O,"XYZ")

Inserts the string value XYZ before the second
value of attribute 3 of dynamic array X and
assigns the resulting array to variable Y.

A = "123456789"
B = INSERT(B,3,-1,O,A)

Inserts 123456789 after the last value of
attribute 3 of dynamic array B.

Z = INSERT(W,5,1,1,"B")

Inserts the string value B before the first
subvalue of the first value of attribute 5 in
array Wand assigns the resulting array to z.

5-39

DATA/BASIC Intrinsic Functions

INT

Purpose

Syntax

Conunents

Examples

5-40

The INT function returns an integer value.

INT(expression)

INT returns the integer value of the specified
expression (i.e., the fractional portion of
expression is truncated).

If expression is a fraction, INT returns a value
of O.

I = 5/3
J = INT(I)

Assigns the value 1 to variable J.

PRINT INT(.25)

Prints the value 0, because expression is a
fraction.

A 3.65
B = 3.6
C INT(A+B)
D = INT(A-B)

Assigns the value 7 to variable C and the value 0
to variable D.

87-1360

I.EN

Purpose

Syntax

Comments

Examples

87-1360

DATA/BASIC Intrinsic Functions

The LEN function determines the length of a
string.

LEN(expression)

LEN returns the numeric value of the length of the
string specified by expres~ion.

A = "1234ABC"
B = LEN (A)

Assigns the value 7 to variable B.

Q = LEN("123")

Assigns the value 3 to variable Q.

x = "123"
Y = "ABC"
Z = LEN(X:Y)

Assigns the value 6 (variable Y concatenated to
variable X) to variable Z.

5-41

DATA/BASIC Intrinsic Functions

LN

Purpose

Syntax

Comments

Examples

5-42

The LN function calculates logarithms to base e.

LN(expression)

LN returns the natural logarithm of the specified
expression.

If expression evaluates to a number less than or
equal to zero, a warning message displays and a
value of zero is returned.

Z = LN(X)

Assigns the natural log of variable X to variable
Z.

F = "12"
G = "14"
A = LN(F-G)
PRINT A

Prints a warning message and assigns a zero to
variable A, because the expression F-G evaluates
to a negative number.

87-1360

MAXIMUM

Purpose

Syntax

Comments

Examples

87-1360

DATA/BASIC Intrinsic Functions

The MAXIMUM intrinsic function returns the maximum
numeric element in a specified dynamic array.

MAXIMUM(array)

Array elements may contain nonnumeric values,
which are ignored.

Null elements evaluate to a zero.

Array delimiters do not need to be the same
character, but they must be either an attribute
mark (AM), a value mark (VM) or a subvalue mark
(SVM) •

EQU AM TO CHAR(254)
A = "1":AM:"2":AM:"7":AM:"5"
B == MAXIMUM(A)

Assigns a 7, which is the maximum numeric value in
array A, to variable B.

EQU AM TO CHAR(254)
EQU VM TO CHAR(253)
EQU SVM TO CHAR(252)
S="TEST":VM:"1":AM:"DATE":VM:"3":SVM:"14":SVM:"86"
T = MAXIMUM(S)
PRINT T

Prints the value 86, which is the maximum numeric
value in string S.

EQU AM TO CHAR(254)
Q = "THIS":AM:"IS":AM:"FRIDAY"
P = MAXIMUM(Q)

No assignment is made, because there are no
numeric values and all nonnumeric values are
ignored.

F = "TESTING":AM:"MAXIMUM":AM:"":AM:"FUNCTION"
G = MAXIMUM(F)

Assigns a 0 to variable G, because a null value
evaluates to a numeric zero.

5-43

DATA/BASIC Intrinsic Functions

MINIMUM

Purpose

Syntax

COJlDDents

Examples

5-44

The MINIMUM function returns the minimum numeric
element found in the specified dynamic array.

MINIMUM(array)

Nonnumeric elements of array are ignored.

Null elements evaluate to zero.

Array delimiters do not need to be the same
character, but they must be either an attribute
mark (AM), a value mark (VM) or a subvalue mark
(SVM) .

EQU AM TO CHAR(254)
ZIP = "92626":AM:"92714":AM:"92720"
X = MINIMUM(ZIP)

Assigns the value 92626 to variable X.

EQU AM TO CHAR(254)
EQU VM TO CHAR(253)
EQU SVM TO CHAR(252)

ARR = "4":AM:"3":VM:"67":VM:"9":SVM:"39":SVM:"11"
Y = MINIMUM(ARR)
PRINT Y

Prints the value 3, the minimum numeric value in
dynamic array ARR.

W = "RECORD":AM:"":AM:"334"
X = MINIMUM(W)
PRINT X

Prints a zero, because null elements evaluate to
zero.

A = "BOSTON" :VM: "MA" :AM: "SACRAMENTO" :VM: "CA"
B = MINIMUM(A)

Nonnumeric elements are ignored, so no assignment
is made.

87-1360

MOD

Purpose

Syntax

Comments

Examples

87-1360

DATA/BASIC Intrinsic Functions

The MOD (REM) function calculates the modulo of
two expressions.

MOD(expl,exp2)
REM(expl,exp2)

The MOD (or REM) statement.returns the modulo of
the specified expressions.

The second expression cannot be zero.

Because MOD returns a zero when expl is evenly
divisible by exp2, this function is typically used
to test whether or not a number is a multiple of
another number.

MOD calculates the modulo in the following way:

MOD(A,B) = A - (INT(A/B) * B)

IF MOD(INT(A),2) THEN PRINT 'ODD' ELSE
PRINT 'EVEN'
END

Determines if a number is odd or even and prints
appropriate message.

INPUT NUM
IF REM(INT(NUM),3) THEN STOP ELSE GO 100

Tests to see if NUM is a multiple of 3. If it is,
the program terminates; otherwise, control
transfers to statement 100.

5-45

DATA/BASIC Intrinsic Functions

NOT

Purpose

Syntax

Comments

Examples

5-46

The NOT function returns the logical inverse of
the specified expression.

NOT(expression)

NOT returns a value of true (1) if expression
evaluates to O.

NOT returns a value of false (0) if expression
evaluates to a nonzero quantity.

Expression must evaluate to a numeric quantity or
a numeric string.

x = NOT(X=ltll)

Assigns the value 1 to variable X, because
NOT(X=ltlt) is a true statement.

A = 1
B = S
PRINT NOT(A AND B)

Prints a zero, because the logical inverse of A
AND B evaluates to false.

IF NOT(X1) THEN STOP

Terminates program if current value of variable Xl
is O.

PRINT NOT(M)

Prints a value of 1 if the current value of
variable M is 0 or a null string; otherwise,
prints a zero. If M is non-numeric, an error
message is returned.

PRINT NOT(S LT 1)

Prints a value of 1.

87-1360

NUM

Purpose

Syntax

Comments

Examples

87-1360

DATA/BASIC Intrinsic Functions

The NUM intrinsic function determines the data
type of the specified expression.

NUM(expression)

NUM returns a value of 1 (true) if expression
evaluates to a number or a. numeric string.

NUM returns a value of 0 (false) if expression
evaluates to a nonnumeric string.

A null string is considered to be a numeric
string.

A string containing a system delimiter is
considered to be nonnumeric. Also, a string
containing leading or trailing zeros is
nonnumeric.

Al=NUM(123)

Assigns a value of 1 to variable A!.

A2=NUM("123")

Assigns a value of 1 to variable A2.

IF NOT(NUM(VALUE)) THEN PRINT "NON-NUMERIC DATA"

Prints the message NON-NUMERIC DATA if VALUE is
not a number or a numeric string.

IF NUM(I CAT J) THEN GOTO 5

Transfers control to statement 5 if the values of
both I and J are numbers or numeric strings.

5-47

DATA/BASIC Intrinsic Functions

OCONV

Purpose

Syntax

Comments

Examples

5-48

The OCONV function performs output conversions
just like those used in ENGLISH.

OCONV(expression, conversion)

The expression to be converted may not contain any
system delimiters.

Conversion may be any of the following:

o Convert date to external format. (See
Appendix F for a list of date conversions.)

G Perform group extraction.

MC Perform character conversion. (See
Appendix E for a list of mask conversions.)

MD Convert integer to decimal number.

MF Perform literal insertions or currency
formatting.

MP Convert packed decimal number to integer.

MT Convert time to external format.

MX Convert ASCII to hexadecimal.

T Convert by table/file translation. (Do not
use if you need to access several items or
attributes.)

These conversions are formed exactly like ENGLISH
conversions and have the same capabilities.

The conversion must be specified as a string
surrounded by quotes.

DOLLARS = OCONV("123400","MD2")

Assigns the string value 1234.00 to the variable
DOLLARS.

PRICE = OCONV("3*179*7","G1*1")

Extracts 179 from the string and assigns it to
PRICE.

87-1360

DATA/BASIC Intrinsic Functions

OCONV (Continued)

87-1360

A = "6240"
B = "0"
XOATE = OCONV(A,B)

Assigns the string value 29 JUL 1985 (the external
date) to XOATE.

A = "A31-1"
Y = OCONV(A,"TINV;X;3;3")
PRINT Y

Retrieves and prints the third attribute of item
A31-1 in the INV file.

"

5-49

DATA/BASIC Intrinsic Functions

PWR

Purpose

Syntax

Conunents

Examples

5-50

The PWR function calculates a variable raised to a
power.

PWR(exp1,exp2)
exp1"exp2

PWR raises the value of expl to the value of exp2.

Negative values can be raised to negative or
positive integer values, but a negative value
raised to a noninteger value is undefined in
DATA/BASIC.

If you try to raise a negative number to a
noninteger value, a warning message displays and a
value of zero is returned.

The PRECISION must fall in the range of 3 to 5 for
the results to be meaningful.

PRINT PWR(2,S)

Prints the value 32 (2 to the fifth power).

x -3
Y -6
Z = PWR(X,Y)

Assigns the value 0.0014 to variable Z.

F = 4
G = 2"F

Assigns the value 16 to variable G (2 to the
fourth) .

87-1360

Purpose

87-1360

DATA/BASIC Intrinsic Functions

The REM intrinsic function is identical to the MOD
function. For information about REM, please refer
to the explanation of the MOD function.

5-51

DATA/BASIC Intrinsic Functions

REPLACE

Purpose

Syntax

Conunents

Examples

5-52

The REPLACE function replaces an attribute, value
or subvalue in a dynamic array. The REPLACE
function has been replaced by the dynamic array
reference function described in Chapter 3 but is
maintained here for compatibility.

REPLACE(array,attr#,value#,subvalue#,expression)

If you specify a nonzero value for attr# and a
zero for both the value and subvalue, then the
entire attribute is replaced in array.

If you specify a nonzero value for both attr# and
value# and a zero for the subvalue, then the
specified value is replaced.

If you specify nonzero values for attr#, value#
and subvalue#, then the specified subvalue is
replaced.

Expression is the replacement value. It may not
contain any system delimiters.

Note: If attr#, value# or subvalue# contain a-I,
the replacement value specified by
expression is inserted after the last
attribute, value or subvalue indicated.
Otherwise, expression is inserted before the
specified attribute, value or subvalue.

Refer to Chapter 3, "DATA/BASIC Arrays" for
information regarding invalid and illogical
dynamic array references.

OPEN 'INVENTORY' ELSE STOP
READ X FROM 'NAME' ELSE STOP
X = REPLACE(X,4,0,0,'EXAMPLE')
WRITE X ON 'NAME'

Replaces attribute 4 of item NAME in file
INVENTORY with the string value EXAMPLE.

OPEN' ','XYZ' ELSE STOP
READ B FROM 'ABC' ELSE STOP
WRITE REPLACE(B,3,-1,0,'NEW VALUE') ON 'ABC'

Inserts the string value NEW VALUE after the last
value of attribute 3 of item ABC in file XYZ.

87-1360

DATA/BASIC Intrinsic Functions

REPLACE (Continued)

X=REPLACE(ARR,2,O,O,' ')

87-1360

Replaces attribute 2 of dynamic array ARR with a
null string and assigns new array to variable X.

VALUE = "TEST STRING"
DA = REPLACE(DA,4,3,2,VALUE)

Replaces subvalue 2 of value 3 of attribute 4 in
dynamic array DA with the string value TEST STRING
and assigns the resulting array to DA.

x = "ABC123"
Y = REPLACE(Y,l,l,-l,X)

Inserts the value ABC123 after the last subvalue
of value 1 of attribute 1 in dynamic array Y.

A=REPLACE(B,2,3,O,"XXX")

Replaces value 3 of attribute 2 of dynamic array B
with the value xxx and assigns the resulting array
to variable A.

5-53

DATA/BASIC Intrinsic Functions

RND

Purpose

Syntax

Comments

Examples

5-54

RND returns a random number.

RND(expression)

RND generates a random number between zero and the
number specified by expression minus one.

Expression must be a positive number. If a
negative number is used, it will be converted to
the absolute value (the program performs an
implicit ABS on the input argument).

z = RND(ll)

Assigns a random number between 0 and 10
(inclusive) to variable z.

R = 100
Q = 50
B = RND(R+Q+1)

Assigns a random number between 0 and 150
(inclusive) to variable B.

Y = RND(-51)

Assigns a random number between 0 and 50 inclusive
to variable Y.

87-1360

SEQ

Purpose

Syntax

Comments

Examples

87-1360

DATA/BASIC Intrinsic Functions

The SEQ function converts an ASCII character to
its corresponding numeric value.

SEQ(expression)

SEQ converts the first character of the string
value of expression to its. corresponding numeric
value.

SEQ is the inverse of the CHAR function.

PRINT SEQ(' I')

Prints the number 73.

DIM C(50)
S = 'THE GOOSE FLIES SOUTH'
FOR 1=1 TO LEN(S)
C(I) = SEQ(S[I,l)
NEXT I

Places the decimal equivalents of the characters
in string S into vector C.

5-55

DATA/BASIC Intrinsic Functions

SIN

Purpose

Syntax

Comments

Examples

5-56

The SIN function calculates the sine of an angle.

SIN(expression)

Expression must be stated in degrees. The
relation between radians and degrees is:

2 Pi radians = 360 degrees

DEG = 3.1416 * RAD/180
SINE = SIN(DEG)

Determines the sine of RAD radians.

A = 42
B = SIN (A)
PRINT B

Prints the sine of variable A.

87-1360

SPACE

Purpose

Syntax

Comments

Examples

87-1360

DATA/BASIC Intrinsic Functions

The SPACE function generates a string value
containing a specified number of blank spaces.

SPACE (expression)

Expression specifies the number of blank spaces.

Use this function if creating more than 6 spaces.
Otherwise, just enclose the spaces in quotes.

PRINT SPACE(10):"HELLO"

Prints 10 blanks followed by the word HELLO.

DIM M(lO)
MAT M = SPACE(20)

Assigns a string consisting of 20 blanks to each
of 10 elements of array M.

S = SPACE(7)
L = "SMITH"
C = " " ,
F = "JOHN"
N = L:S:C:S:F

Assigns the following string to variable N:
" SMI TH JOHN" .

5-57

DATA/BASIC Intrinsic Functions

SPOOLER

Purpose

Syntax

Comments

The SPOOLER function returns spooler status
information.

SPOOLER(X{, Y})

X determines which spooler function to return. It
must be a number from 1 to 4.

If X is less than 1 or greater than 4, a null
string is returned.

Y specifies an account name or line number,
depending on the value of X. If Y is omitted, a
null value is used.

All returned information is in the form of a
dynamic array.

Following is the information returned for each
value of X.

X=l
(Y is ignored)

Returns the same information
as the SP-STATUS menu. Each
attribute corresponds to a
separate device and returns the
information as values in the
following format:

Form Q name]Form type]Device assigned]Device
type]Device status]# entries for this
device]Page skip

x=2 Returns the same information as
Y={"account namell}the SP-JOBS menu plus some

password information. Each
attribute corresponds to a
separate job queue entry and
returns the information as
values in the following format:

Form Q name]Job #]Generating account]Generating
line number]Creation date]Current print status]
Current options]Total job size(frames)]#
copies to print{]password flag}

Note: The password is only returned if the account
executing the program has SYS2 privileges.
If the account has SYSl or SYSO privileges,
a one is returned as the password flag. If
the job entry does not require a password,
no value is returned.

5-58 87-1360

DATA/BASIC Intrinsic Functions

Spooler (Continued)

X=3 Returns the current spooler
assignment information for the
calling process or for the
specified line number. Each
attribute of the returned string
is in the following multivalued
format: .

Examples

87-1360

Y={line number}

BASIC print file #]Form Q name]Options]Copies

Note: If a default print assignment is used, a
null string is returned until at least one
job has been queued for output.

X=4
Y={line number}

Returns any currently open,
queued jobs for the calling
process or for the specified
line number. The multivalued
format of the returned variable
is:

BASIC print file #]Spooler print file #]Current
size in frames

Note: The BASIC print file number is the number of
the print file specified in the PRINT ON n
statement in the program executing the print
job. The spooler print file number is the
queue entry number the spooler automatically
assigns to a new job. This is the same
number displayed in a SP-JOBS request and as
HOLD ENTRY #n when a hold file is generated.

INFO = SPOOLER(l)
PRINT INFO

Returns the following sample information:

STANDARD}}l}LPTR}ASSIGNED}O}O

**
INFO = SPOOLER(2,SYSPROG)

Returns the following type of information:

STANDARD}O}SYSPROG}3}24 SEP}PRINT}}32}1}PSWD

5-59

DATA/BASIC Intrinsic Functions

SQRT

Purpose

Syntax

Conunents

Examples

5-60

The SQRT intrinsic function calculates the square
root of an expression.

SQRT(expression)

Expression must be greater than or equal to zero.
An expression that evaluates' to a negative number
returns a zero, and a warning message is
displayed.

The PRECISION must be in the range of 3 to 5.

x = "64"
Y SQRT(X)

Assigns the value 8 (the square root of 64) to
variable Y.

C = SQRT(A*A + B*B)

Finds the hypotenuse of a right triangle and
assigns the value to variable C.

87-1360

SQUOTE

Purpose

Syntax

Conunent

Examples

87-1360

DATA/BASIC Intrinsic Functions

The SQUOTE function returns the specified string
enclosed in single quotes.

SQUOTE(expression)

Any valid DATA/BASIC expression is acceptable.

L = "JOHN SMITH"
M = SQUOTE(L)

Assigns the value 'JOHN SMITH' to variable M.

T = "THIS IS A TEST."
S = SQUOTE(T)
PRINT T

Prints the string 'THIS IS A TEST.'

5-61

DATA/BASIC Intrinsic Functions

STR

Purpose

Syntax

CODDDents

Examples

5-62

STR generates a string value containing a
specified number of occurrences of a string.

STR(exp1, exp2)

Exp1 specifies the character(s) from which to
create the string. Exp2 is "the number of
occurrences of exp1 to be included in the string.

If exp2 is less than zero, a null string is
created.

Use the STR function if you are generating more
than 9 characters; otherwise, just enclose the
string in quotes.

S=STR('*',12)

Creates a string consisting of 12 asterisks (*)
and assigns it to variable S.

PRINT STR('ABC',3)

Prints the string ABCABCABC.

VAR = STR("A",2)
A = "AAA"
C = VAR:A

Assigns the string value AAAAA to variable C.

N = STR("?%?",4)

Assigns the string value ?%??%??%??%? to variable
N.

87-1360

SUMMATION

Purpose

Syntax

Comments

Examples

87-1360

DATA/BASIC Intrinsic Functions

The SUMMATION function returns the sum of all
elements of a dynamic array.

SUMMATION(array)

SUMMATION returns the sum of all numeric elements
found in the specified dynamic array.

Nonnumeric elements of array are ignored.

Null elements evaluate to zero.

Array delimiters do not need to be the same
character, but they must be either an attribute
mark (AM), a value mark (VM) or a subvalue mark
(SVM) •

D = 4]1]6"4"6]1
C = SUMMATION(D)

Returns the sum (22) of all the numeric elements
of dynamic array D.

AGES = 22"34"25"57"54
A = SUMMATION(AGES)

Assigns the value 192 (the sum of all the ages) to
variable A.

LIST = SMITH]JOHN"JONES]BILL"JENKINS]SAM
S = SUMMATION(LIST)

No operation is performed, because all nonnumeric
values are ignored.

5-63

DATA/BASIC Intrinsic Functions

SYSTEM

Purpose

Syntax

Comments

The SYSTEM function allows access to the current
state of various system elements.

SYSTEM(expression)

These values of expression return the following
information:

1 Returns a 1 if the current PRINT statement
destination is to the printer.

2 Returns the current page width as defined
by the TERM statement.

3 Returns the current page length as defined
by the TERM statement.

4 Returns the number of lines remaining to
print on the current page, based on the
parameters defined by the current TERM
statement.

5 Returns the current page number.

6 Returns the current line count.

7 Returns the terminal type as defined in the
TERM statement.

8 Not used; returns a zero.

9 Returns the current CPU millisecond count
for the calling process.

10 Returns a 1 if the stack (STaN) is
currently enabled (i.e., stacked input is
currently available).

11 Returns a 1 if an external list is
currently active; otherwise, returns a
zero. The list must have been generated by
a SELECT, SSELECT, FORM-LIST or GET-LIST
executed immediately prior to running the
current program.

12 Returns the current system time in 1/10
second format.

13 Returns a zero.

14 Returns the type ahead count.

5-64 87-1360

DATA/BASIC Intrinsic Functions

SYSTEM (Continued)

15 Returns the options specified as part of
the last TCL statement in the following
three attributes:

- a string of letters corresponding to
the alpha options typed.

the first numeric parameter.

- the second numeric parameter.

Attributes 2 and 3 appear only if they were
specified at TCL.

Note: The internal variables containing
the two numeric subroutines are used
by some system subroutines. They
should be retrieved early in the
program to avoid getting incorrect
values.

16 Returns the current level of a PERFORM
statement. PERFORMs can be nested 32
levels deep.

17 Not used and reserved.

18 Returns the port number.

19 Returns the account name. This is
retrieved directly from SYSTEM.

20 Returns a 1 if the program currently
running is cataloged.

21 Returns the type of visual characteristics
supported by the current TERMTYPE:

o Invalid.
1 Video characteristics not supported.
2 Video character requires a CRT

position.
3 CRT position is not required.

87-1360 5-65

DATA/BASIC Intrinsic Functions

SYSTEM (Continued)

22 Returns the following system configuration
parameters as a dynamic array.

1 System serial number
2 Firmware type
3 Firmware version number
4 Wordmate (1 if 'allowed; otherwise 0)
5 Number of ABS frames
6 Number of active lines
7 Spoolers line number
8 Maximum FID
9 Number of workspace frames

23 Returns a 0 if the BREAK key is enabled.

Returns a 1 if the BREAK key is disabled by
a DATA/BASIC statement. In this case,
BREAK is reenabled automatically when the
program is finished.

Returns a 2 if BREAK is disabled from TCL.
In this case, it cannot be reenabled from a
DATA/BASIC program.

Returns a 3 if the BREAK key has been
disabled both by TCL and a DATA/BASIC
statement.

24 Returns a 1 if character echoing is
enabled.

25 Returns a 1 if this is a phantom process.

26 Returns the current prompt character.

27 Returns a 1 if running from a PROC.

28 Returns the system privilege level (0,1,2).

29 Returns the number of bytes in a standard
system frame (500 or 1000).

30 Returns a 1 if pagination is in effect; 0
otherwise.

31 Reserved.

32 Reserved.

33 Reserved.

34 Reserved.

5-66 87-1360

DATA/BASIC Intrinsic Functions

SYSTEM (Continued)

Examples

87-1360

Y =

35 Returns the number of the language
currently in use. (Denationalization)

36 Returns the number of the default collation
table. (Denationalization)

37 Returns the thousands separator currently
in use. (Denationalization)

38 Returns the decimal separator currently in
use. (Denationalization)

39 Returns the money sign currently in use.
(Denationalization)

40 Returns the name of the program currently
executing.

41 Returns the release number of the operating
system (e.g., the literal 2.2).

42 Returns Asynchronous Communication Port
status byte according to the following bit
pattern:

LSB Bit 0 = 1 if DTR raised
Bit 1 = 1 if DCD raised
Bit 2 = 1 if CTS raised
Bit 3 = 1 if currently outputting
Bit 4 = 1 if output buffer full
Bit 5 - Not used
Bit 6 - Not used
Bit 7 - Not used

SYSTEM(26)
PRINT Y

Prints the current prompt character (? for
example) .

A = SYSTEM(22)
B = EXTRACT(A,2,0,0)
PRINT B

Prints the value of the second attribute (firmware
type) of the array containing the system
configuration parameters.

5-67

DATA/BASIC Intrinsic Functions

TAN

Purpose

Syntax

Comments

Examples

5-68

The TAN function calculates the tangent of an
angle.

TAN(expression)

Expression must be stated in degrees. The
relation between radians and degrees is:

2 Pi radians = 360 degrees

Tangent is undefined for angles which are odd
multiples of 90 degrees (90*1=90, 90*3=270, etc.).
If the expression used is an odd multiple of 90, a
warning message is displayed and a value of zero
is returned.

ANGLE = 25
A =TAN(ANGLE)

Calculates the tangent of an angle of 25 degrees
and assigns the value to A.

Y = TAN(30)

Assigns the tangent of an angle of 30 degrees to
variable Y.

87-1360

TIME

Purpose

Syntax

Connnents

Examples

87-1360

DATA/BASIC Intrinsic Functions

The TIME function returns the internal time of
day.

TIME()

This function returns a string value containing
the internal time of day.

The internal time is the number of seconds past
midnight.

Internal times are converted to external format
with the ENGLISH MT conversion.

x = TIME ()

Assigns the string value of the internal time to
variable x.

IF TIME() > 1000 THEN GOTO 10

Branches to statement 10 if more than 1000 seconds
have passed since midnight.

5-69

DATA/BASIC Intrinsic Functions

TIMEDATE

Purpose

Syntax

Comments

Examples

The TIMEDATE function returns the current time and
date in external format.

TIMEDATE()

External format is:

hh:mm:ss dd mmm yyyy

where hh = hours
mm = minutes
ss seconds
dd day
mmm = month
yyyy = year

B = TIMEDATE()

Assigns the string value of the current time and
date to variable B.

PRINT TIMEDATE()

Prints the current time and date in external
format. For example:

11:27:51 20 NOV 1986

5-70 87-1360

TRIM

Purpose

Syntax

Conunents

Examples

87-1360

DATA/BASIC Intrinsic Functions

The TRIM function removes unnecessary blank spaces
from a specified string.

TRIM(string,{,char{,type}})

TRIM deletes preceding, trailing and redundant
blanks from the literal or, variable string.

Char lets you specify another character to remove
from the string, instead of the default blank.

Type can be one of the following specifications:

L = Remove all leading occurrences of char.
T = Remove all trailing occurrences of char.
B = Remove both leading and trailing

occurrences of char.
A = Remove all occurrences of char.
R = Remove redundant occurrences of char. (R is

the default type.)

If char is null, no operation is performed, and
the original string is returned.

If type evaluates to null, type R is assumed.

NEW.STR = TRIM(OLD.STR,CHAR(254), 'T')

Removes all trailing attributes from OLD.STR and
assigns the new string to NEW.STR.

N = " SMITH, JOHN"
M = TRIM(N)

Assigns the value SMITH , JOHN to variable M.

STR1 = "1230010029911"
X = TRIM (STR1 , " 1" , 'A I)

PRINT X

Removes all occurrences of the number 1 and prints
the string 230000299.

5-71

DATA/BASIC Intrinsic Functions

UNASSIGNED

Purpose

Syntax

Comments

Example

5-72

The UNASSIGNED function determines whether or not
a value is assigned to a variable.

UNASSIGNED(address)

Address is a single variable reference only.

UNASSIGNED returns a 1 if that variable is
currently assigned a value; otherwise, it returns
a zero.

x = UNASSIGNED(FEFE)

Returns a 1 if the variable at address FE FE is
currently assigned a value; returns a zero
otherwise.

87-1360

87-1360

Chapter 6
DATA/BASIC Commands Entered at TCL

Overview
BASIC
BASIC Verb with Map Option
BLIST
BREF
BVERIFY
CATALOG
DB ...
DELETE-CATALOG
PRINT-CATALOG
PRINT-HEADER .
RUN . . .
DATA/BASIC and PROC

6-3
6-3
6-6
6-8
6-13
6-14
6-15
6-17
6-18
6-19
6-20
6-21
6-23

6-1

Overview

BASIC

Definition

Syntax

Comments

87-1360

DATA/BASIC Commands Entered at TCL

This chapter presents TCL verbs and PROCs that are
used to manipulate DATA/BASIC programs. These
verbs and PROCs let you do things like compile,
catalog, and execute a program. The following
commands (which must be entered at TCL) are listed
in alphabetical order.

The BASIC verb compiles a DATA/BASIC program that
was created using the EDITOR. BASIC creates a new
file item containing the compiled DATA/BASIC
program. It appends a dollar sign ($) to the
newly-created item-ide

BASIC file-name [item-list {(options)}] [*]

File-name is the name of the file in which the
DATA/BASIC program was created.

If you specify an item-list, it must consist of
one or more item-ids, separated by one or more
blanks.

If used, any option(s) must be enclosed in
parenthesis. If option is not followed by any
other specification, the closing parenthesis is
not required. Multiple options must be separated
by commas. Valid options include:

B

E

L

M

Backwards compatibility. Use option B to
compile programs written prior to the
current REALITY O/S version to make them
compatible for variable allocation when
CHAINING programs.

Compile program without end-of-line (EOL)
opcodes in object text. Option E reduces
the size of debugged programs by
eliminating one byte from the object text
for each line in the program. Remember
that any run-time error messages will
indicate a line number of one, because EOLs
are used to count lines.

Print Listing of the DATA/BASIC program.

Create symbol table and print Map of
DATA/BASIC program. The M option must be
used if you are using the debugger. (See
the next topic "BASIC Verb with Map Option"
for more information.)

6-3

DATA/BASIC Commands Entered at TCL

BASIC (Continued)

6-4

N No ~age. This option inhibits automatic
paglng on the terminal when either the L or
M option is used.

P Print DATA/BASIC compiler error messages on
the printer.

X Create a cross reference of variables and
labels in the program.

Note: A file called CSYM must be present
on the account before performing
this process. If it is not already
there, you must create it. X clears
the CSYM file and then creates an
item for each variable and label in
the program. Each created item
contains the line number(s) on which
that label or variable is referred
to. An asterisk (*) is appended to
line numbers where the variable
value may change, such as an
assignment statement (with the
exception of function and subroutine
parameters) .

If the X option is used with an
item-list mass compile, the X option
will only be performed while
compiling the first item in the
item-list.

If you specify an asterisk (*) rather than an
item-list, all object code (items beginning with
$) and map items (items beginning with *) are
ignored.

If a DATA/BASIC program is written incorrectly,
compilation error messages are displayed as the
program compiles. The program does not compile
successfully, and the following message is
displayed:

LINE xxx [B100] COMPILATION ABORTED; NO OBJECT CODE PRODUCED

If there are no errors in the program, it compiles
successfully, with the following message:

LINE xxx [BO] COMPILATION COMPLETED

87-1360

DATA/BASIC Commands Entered at TCL

BASIC (Continued)

Example :EDIT PROGRAMS TESTING
NEW ITEM
TOP
. I
001 PRINT "THIS IS II

002 PRINT "A TEST"
003 END
004
TOP
.FI
'TESTING' filed in file 'PROGRAMS'.

:BASIC PROGRAMS TESTING

LINE 003 [BO] COMPILATION COMPLETED

87-1360 6-5

DATA/BASIC Commands Entered at TCL

BASIC Verb with Map Option

Purpose

Definition

Variable
Map

Statement
Map

Sample Map

6-6

The M(ap) option of the BASIC verb creates a
symbol table and prints a map of the program,
consisting of a variable map and a statement map.

The M option creates a new item in the file, whose
item-id consists of an asterisk concatenated to
the program item-id. This new item is the symbol
table that must be available for the debugger to
reference variables by name. If a program is
subsequently recompiled without the M option, the
old symbol table map item is deleted.

The variable map lists the offset of every
DATA/BASIC variable in the program. The offset is
in decimal form. It starts at the beginning of
the seventh frame of the IS buffer. For example:

20 xxx 30 yyy

This entry indicates that the variable descriptor
xxx starts at byte 20 of the seventh frame of the
IS buffer and variable descriptor yyy starts at
byte 30. Descriptors are ten bytes long.
Descriptor format is illustrated in Table 6-1.

The statement map shows which frame number
contains which statement numbers of the DATA/BASIC
program. When the program is run, frame 01 is the
seventh frame in the OS buffer. If the program is
cataloged, frame 01 is specified in the catalog
pointer item in the POINTER-FILE.

The statement map can be used to determine if
frequently-executed loops cross any frame
boundaries.

Table 6-1 shows the map that might display when
you enter :BASIC PROGRAMS PYTHAG (M)

Table 6-1. Sample Map

0020 A
0060 I

FRAME LINES
01 001-023

0030 B
0070 X

0040 CC

LINE 23 [BO] COMPILATION COMPLETED

0050 C

87-1360

Descriptor

87-1360

DATA/BASIC Commands Entered at TCL

Table 6-2 outlines the format of a variable
descriptor.

Table 6-2. Map Descriptor Formats

Descriptor Name

Unassigned

Direct number

Direct string

Indirect string

File BMS

Subroutine
address

Bytes

1-10

1
2
3-8
9-10

1
2
3-10

1
2
3-8

9-10

1
2
3-6
7-8
9-10

1
2
3-8

9-10

Contents

Zeros

Type code = X'Ol'
Unused
Binary number
Unused

Type code = X'02'
Unused
Short string
terminated by an SM

Type code = X'82
Unused
SR pointing one byte
before string
terminated by an SM
in Free Storage,
Temporary Space, or
Binary Object Code
Free Storage buffer
size

Type code = X'04'
Unused
Base
Modulo
Separation

Type code = X'40'
Unused
SR pointing to
cataloged subroutine
Unused

6-7

DATA/BASIC Commands Entered at TCL

BLIST

Purpose

Syntax

Options

6-8

BLIST lists DATA/BASIC source code in a more
usable format than a simple LIST statement.

BLIST {DICT} file-name item-id {(options)}

Note: File-name item-id specifies the program you
want listed. However; if you generate an
item-list using one the possible ENGLISH
verbs (e.g., SELECT, BSELECT, etc.), do not
specify an item-id.

The following options are included:

A Indent All comments. Indents any line
beginning with an asterisk (*) to the
middle of the page.

B

C

D

E

F

I

K

Note: BLIST does not recognize comment
lines that begin with the REM
statement. Use an * to specify
comments if you want to indent them
with BLIST.

Blanks. Set number of blanks per indent
level (default is 3).

Logical structures are automatically
indented 3 spaces. Use the B option to
change this default value. You will be
prompted for a number from 1 to 5 before
the listing begins.

Keep Comments at left margin (default is
to follow indenting).

Double-space output.

Expand INCLUDEd sections into the listing
(used with the 'M' option).

Include source Filename in heading.

Indent. Causes any comments beginning at
the end of a normal statement line to be
indented to the middle of the page.

Kill. Suppress generation of line of
asterisks (*) when the source line begins
with an exclamation point (1).

87-1360

DATA/BASIC Commands Entered at TCL

BLIST (Continued)

Line Numbers

Logical
Structures

97-1360

L Outline Logical structures. Prints a
period (.) at each level of indenting.
(See discussion of Logical Structures.)

M Print DATA/BASIC line numbers for INCLUDEd
items (without expand). (See discussion
of INCLUDE Statements.)

N NOPAGE. Listing scrolls without paging.

P

S

U

x

n{-m}

Output to system Printer (default is to
terminal) .

Suppress listing.

Update source code with logical indenting.
Logical formatting can then be seen when
you edit the program with the EDITOR. The
new format does not affect compilation.

Print level number for each INCLUDE
statement (used with 'M' and 'E' options).
(See discussion of INCLUDE Statements.)

Begin printing with line n {through line
m}. This option lets you restrict the
program listing to certain lines and still
retain the correct logical indenting.

Additional options include:

When used as the first nonblank character
of a line, causes a row of asterisks (*)
to be printed as the output line. (This
may be suppressed using the K option.)

11 When used as the first two characters of a
line, causes a page eject after printing
the line.

BLIST numbers all statement lines. The line
numbers correspond to the line numbers supplied by
the EDITOR when editing the source code. BLIST
also indents all lines to allow labeled statements
to be "outdented". This makes it much easier to
modify the program and to locate labels quickly.

The L option performs logical indenting of CASE
and multiline IF statements, and of LOOP and FOR­
NEXT structures. This makes it easier to follow
the flow of the program.

6-9

DATA/BASIC Commands Entered at TCL

BLIST (Continued)

INCLUDE
Statements

6-10

BLIST also flags any logical structure's ending
statement that does not match the beginning
statement. For instance, if a structure begins
with a FOR statement, it must end with a NEXT
statement. If it ends with any other statement
(e.g., END or REPEAT), BLIST flags the invalid
ending statement.

The L option prints a dot at each level of
indenting, as in the following example:

IF A = 2 THEN

END

FOR I = 1 TO 10
PRINT I

NEXT I

When DATA/BASIC compiles programs that have
INCLUDE statements, the line numbers output in
error messages and by the debugger will differ
from those in the source code. The M option lets
you see both the EDITOR line numbers and the
DATA/BASIC line numbers. The first column gives
the attribute numbers corresponding to the source
code item. The second column gives the line
numbers DATA/BASIC uses when compiling and running
the program.

If you specify the E option in conjunction with
the M option, the INCLUDEd items are expanded in
the listing. The same two columns are displayed.

If you use the X option with the E option, a
number corresponding to the current level of the
INCLUDE statement is displayed in the third
column.

For example, in the following example, the
programs Tl, T2 and T3 contain the following
statements:

Tl
PRINT "LEVEL 1"
INCLUDE T2 FROM BP
END

T2
PRINT "LEVEL 2"
INCLUDE T3 FROM BP
END

T3
PRINT "LEVEL 3"
END

87-1360

DATA/BASIC Commands Entered at TeL

BLIST (Continued)

Examples

87-1360

The statement :BLIST BP T1 (M,E,X) displays the
following information:

Edit Bsc

001 001 PRINT "LEVEL 1"
002 002 0 * INCLUD,E T2 FROM BP

003 1 PRINT "LEVEL 2"
004 1 *INCLUDE T3 FROM BP
005 2 PRINT "LEVEL 3"
006 2=======>END
007 l=======>END

003 008 END

:BLIST FILE1 (N)

'Displays FILE1 on the terminal without stopping at
each page.

:BLIST FILE3 (F,U)

Displays the file-name (FILE3) in the heading and
updates the source program with spaces to reflect
logical indenting.

:BLIST TEST1 (P , 100-1S0)

Outputs lines 100 through 150 to the printer.

The program TESTPROG contains the following code:

Q = 1
PRINT Q, * Prints the value of Q
FOR I = 1 TO 10
PRINT I*Q
NEXT I
* Executes loop 10 times
END

6-11

DATA/BASIC Commands Entered at TCL

BLIST (Continued)

When you execute the following command:

6-12

:BLIST TESTPROG (A

the program now looks like this:

Q = 1
PRINT Q,
FOR I = 1 TO 10

PRINT I*Q
NEXT I

END

* Prints the value of Q

* Executes loop 10 times

87-1360

BREF

Purpose

Syntax

Comments

97-1360

DATA/BASIC Commands Entered at TCL

BREF produces a sorted cross-reference listing of
variables and labels in a DATA/BASIC program.

BREF {(P)}

The P option sends the listing to the printer.

BREF gets its listing from the CSYM file. (If the
CSYM file is not already present on your account,
you must create it.) In order to place a cross­
reference item in the CSYM file, the program must
have been compiled using the X option.

Table 6-3 shows a sample of a BREF display. Each
item contains the line number(s) on which that
label or variable is referred to. An asterisk (*)
is appended to line numbers where the variable's
value may change, such as an assignment statement
(with the exception of function and subroutine
parameters) .

Table 6-3. Sample BREF Display

16:30:03 18 FEB 1987 PAGE 1
SYSTEM CROSS-REFERENCE

CSYM TYPE REFERENCES

E · · · · · · 002 041

ST.NUM · · · · 004* 016* 016 040* 041 046

FLAG · · · 015* 018* 039

99 · · · · 017 *044

3 · · · · · · 021 035*

I · · · · · · 020* 020* 021 022 023 024
025* 027* 027 028 030*
033 046* 046* 047

SP · · · · · 038* 039* 041

BUF · · · 001* 044

STRINGS · · · 003 016* 041* 047

6-13

DATA/BASIC Commands Entered at TCL

BVERIFY

Purpose

Syntax

Comments

Examples

6-14

The BVERIFY verb verifies the object code of a
cataloged program (provided that the $item is
present in the original file).

BVERIFY item-id {account-name} {(options)}

Item-id is the cataloged program's name.

If you want to verify a program in another
account, specify the account-name.

The following options are available:

A List All mismatches.

E List only the Errors found.

P Send output to the Printer.

If the verify is successful, the following message
is displayed:

FILE
ITEM
COMPILED
PRECISION
VERIFIED.

BP
MATH
18 FEB 1987 AT 16:16:38
SEQUEL 5.2 / SPIRIT 2.2

:BVERIFY ITEMI (A)

Verifies the object code of ITEMI and lists all
mismatches, if any.

:BVERIFY ACCT4 PAYROLL (P)

Verifies the object code of ACCT4 in the PAYROLL
account and sends output to the printer.

87-1360

CATALOG

Purpose

Syntax

Comments

87-1360

DATA/BASIC Commands Entered at TCL

The CATALOG verb loads the object code of a
DATA/BASIC program into system disk space, so it
can be shared by several users at once. If more
than one user needs the same frame of code, they
can share the copy that is in main memory, thereby
reducing the number of frame faults.

CATALOG file-name item-id {item-id ... }

File-name item-id specifies the compiled
DATA/BASIC program to catalog. You can specify
more than one item-id if you wish.

When the program has been cataloged, the following
message is displayed:

[241] i tan-id CATA.I.£X;ED; n FRAMES USED.

N is the size of the object code in frames (500
bytes each).

If it does not already exist, a TCL-II verb (with
the same name as the item-id) is added to your
Master Dictionary (M/D). The M/D entry for the
verb has the following form:

001 P
002 10B4
003
004
005 account-name item-id

Account-name is the name of the account from which
the catalog took place, and item-id is the name of
the cataloged program.

Placing the name of the cataloged program in the
M/D allows cataloged program pointers to be copied
to new names without having to recatalog the
original program under a different name.

If the item already exists in your M/D, but it is
not in the above format, it will not be cataloged,
and the following message displays:

[415] itan-id EXISTS ON FILE

Some previously cataloged programs may show only
the account-name in the M/D. These can be changed
to the newer format by manually adding the item-id
after the account-name in the M/D.

6-15

DATA/BASIC Commands Entered at TCL

CATALOG (Continued)

Examples

6-16

Note: If a program is recompiled, it must be
recataloged.

:CATALOG BP TEST1

Loads the object code of program BP TESTI into
system disk space and displays the following
message:

[241] 'TESTl' CATAI.£X;EDi 1 FRAMES USED.

:CATALOG FILEA 1 2 3

CATALOGs the three DATA/BASIC programs with
item-ids of 1, 2, and 3 in file FILEA. The
following messages are displayed:

[241] '1' CATAI.£X;ED; 3 FRAMES USED.
[241] '2' CATAI.£X;ED; 1 FRAMES USED.
[241] '3' CATAI.£X;ED; 5 FRAMES USED.

87-1360

DB

Purpose

Syntax

Comments

Example

87-1360

DATA/BASIC Commands Entered at TCL

The DB PROC helps you develop programs faster by
providing a menu selection for editing, compiling
and running DATA/BASIC PROGRAMS.

DB

DB prompts you for the name of the file and
program (item) you want to edit, compile, run or
print.

When you enter the file and item names, the 'at'
sign (@) is displayed, prompting you for input.
The valid options are:

E

C

R

P

<RETURN>

Edit program.

Compile program.

Run program.

Copy program to printer.

Return to TCL.

A similar PROC, but one providing a larger menu
with more operations, is listed in the PROC
programming examples in the PROC Programming
Reference Manual.

In the following example, boldface text represents
text that you type. The rest of the text is
generated by the system.

:DB

FILE NA..ME = BP
ITEM NAME = TEST

@E
TOP

At this point, you can edit the TEST program in
file BP. When you exit the EDITOR, DB returns you
to the @ prompt.

6-17

DATA/BASIC Commands Entered at TCL

DELETE-CATALOG

Purpose

Syntax

Comments

Examples

6-18

DELETE-CATALOG "decatalogs" a DATA/BASIC program.

DELETE-CATALOG item-id {account-name}

An item is maintained in the POINTER-FILE for each
cataloged DATA/BASIC program. DELETE-CATALOG
deletes the specified item-id from the POINTER­
FILE, returns all the overflow space and deletes
the verb from your M/D.

If you want to "decatalog" a program contained in
another account, simply specify the account-name.

After the verb has been deleted from the M/D, if
you try to execute it from any account, the
following message displays:

item-id IS NOr A VERB

:DELETE-CATALOG TEST4 SYSPROG

If TEST4 is a valid cataloged program on the
SYSPROG account, it is deleted and the following
message displays:

[242] 'TEST4' DELETED.

:DELETE-CATALOG ITEMA

If ITEMA is not a cataloged program, it cannot be
deleted. The system displays the message:

, ITEMA' NOr ON FILE

87-1360

PRINT-CATALOG

Purpose

Syntax

Comments

Example

87-1360

DATA/BASIC Commands Entered at TCL

The PRINT-CATALOG verb prints the time and date
that a specified cataloged DATA/BASIC program was
compiled and the precision used in the program.
(This is the same as the PRINT-HEADER verb, except
that it is used for cataloged programs.)

PRINT-CATALOG file-name item-id {(P)}

File-name item-id specifies the DATA/BASIC
program.

Use the P option to send the output to the
printer.

If you try to execute a PRINT-CATALOG on a program
which has not been cataloged, the following
message displays:

'account-nama*C*itan-id' NOr ON FILE.

:PRINT-CATALOG BP PGM1

The following information is printed about the
cataloged program PGM1:

FILE:
ITEM
COMPILED
PRECISION

BP
PGMl
19 FEB 1987 AT 08:20:32
SEQUEL 5.2 / SPIRIT 2.2

6-19

DATA/BASIC Commands Entered at TCL

PRINT-HEADER

Purpose

Syntax

Comment

Example

6-20

The PRINT-HEADER verb prints the time and date
that a specified DATA/BASIC program was compiled
and the precision used in the program.

PRINT-HEADER file-name item-id {(P)}

File-name item-id specifies the DATA/BASIC
program.

Use the P option to send the output to the
printer.

:PRINT-HEADER PROG Al (P)

Displays the following information about the
DATA/BASIC program:

FILE:
ITEM
COMPILED
PRECISION

PRCX;
Al
19 FEB 1987 AT 11:06:42
SEQUEL 5.2 / SPIRIT 2.2

87-1360

RUN

Purpose

Syntax

Options

87-1360

DATA/BASIC Commands Entered at TCL

The RUN verb executes a compiled DATA/BASIC
program.

RUN file-name item-id {(options)}

File-name item-id specifies the DATA/BASIC program
to execute.

If any options are specified, they must be
enclosed in parenthesis. The closing parenthesis
is optional. Multiple options must be separated
by commas. The following options are available:

D Run-time Debug. Breaks to the DATA/BASIC
symbolic debugger before executing the
first statement in the program and
whenever a DEBUG statement is executed.
(The @ command in the debugger inhibits
breaks at DEBUG statements.)

F Treats warning messages as Fatal errors.
Breaks to debugger to allow determination
of error and possible recovery. You may
continue program execution with the G
command or by pressing the <LINE FEED>
key.

G Garbage collection data. Used to keep
track of byte and buffer use during
program execution. Twelve counters are
used to determine the following:

I

•

•
•

•

•

Total number of bytes used for variable
storage.

Total number of bytes abandoned.
Number of 50-byte buffers used,

abandoned, and reused.
Number of ISO-byte buffers used,

abandoned, and reused.
Number of 250-(or multiples of 250)
byte buffers used, abandoned, and
reused.

A garbage collection/buffer use report is
printed when the program terminates. (For
more information, refer to "Appendix C.
Variable Structure and Allocation".)

Inhibits initialization of data area.
(Refer to the explanation of the I option
in the CHAIN statement, found in Chapter
4, "DATA/BASIC Statements".)

6-21

DATA/BASIC Commands Entered at TCL

RUN (Continued)

Cataloged
Programs

Run-time
Errors

Example

6-22

N No page. Does not wait for a carriage
return after each page is output to the
terminal.

P Turns the Printer on.

S Suppresses run-time warning messages.

T Inhibits writing of Tape label when using
the WRITET statement. (This allows for
compatibility to releases prior to 3.0.)

Cataloging programs minimizes the time needed to
execute a program. This is because cataloged
programs are executed by issuing the item-id of
the program as a verb. The same options apply to
cataloged programs.

If a run-time error occurs, an appropriate
warning/error message displays and the program
traps to the DATA/BASIC symbolic debugger. Fatal
run-time errors cause the program to abort. (For
more information about run-time error messages,
refer to "Appendix B. DATA/BASIC Messages".)

:RUN PROGRAMS TESTING

This command executes the program TESTING.

87-1360

DATA/BASIC Commands Entered at TCL

DATA/BASIC and PROC

Introduction

Example

A DATA/BASIC program may be used in a PROC.

The following DATA/BASIC program is called
LISTIDS:

OPEN 'BASIC/TEST' ELSE
PRINT 'FILE MISSING'; STOP

END
10 N = 0
20 READNEXT ID ELSE STOP

PRINT ID 'L##################':
N=N+1
IF N >= 4 THEN PRINT; GOTO 10
GOTO 20
END

The following PROC, called LISTBT, contains the
command to execute the program LISTIDS:

PQN
HSSELECT BASIC/TEST
STON
HRUN BASIC/TEST LISTIDS<
P

To execute this PROC (and the DATA/BASIC program
contained within it), simply type in the name of
the PROC at the TCL prompt. For example:

:LISTBT

LISTBT sort selects the item-ids contained in the
file BASIC/TEST and invokes the DATA/BASIC program
LISTIDS, which then lists the selected item-ids,
four per line.

87-1360 6-23

87-1360

Chapter 7
DATA/BASIC Symbolic Debugger

Overview
Symbol Table . .
Sample Exercise
Summary of Debugger Commands .

Introduction
Breakpoint and Trace Tables
Symbol Table
Execution Control
Special Commands . .
Exiting the Debugger .

$ Command
/ Command
? Command
@ Command
B Command
D Command
E Command
END Command
G Command
K Command
LP Command .
N Command
OFF Command
P Command . . .
PC Command. ...
T Command
U Command
Z Command

7-3
7-3
7-4
7-6
7-6
7-6
7-6
7-6
7-6
7-7
7-8
7-9
7-11
7-12
7-13
7-15
7-16
7-17
7-18
7-19
7-20
7-21
7-22
7-23
7-24
7-25
7-26
7-27

7-1

Overview

Symbol
Table

87-1360

DATA/BASIC Symbolic Debugger

There are three ways to enter the DATA/BASIC
Symbolic Debugger:

1. Press the <BREAK> key while the program is
executing.

2. Specify the D option when you issue the RUN
verb (or when you specify the program item-id
for a cataloged program).

3. Execute a DEBUG statement from within a
DATA/BASIC program (only valid if the D option
has been specified with the RUN verb).

Once you enter the debugger, the system displays
the line number about to be executed and prompts
you with an asterisk (*). The * distinguishes the
DATA/BASIC debugger from the system debugger and
TCL. For example, the following display appears
when you press the <BREAK> key while the TEST
program is executing:

:RUN PROGRAM TEST

*115
*

This display indicates that line 15 was about to
be executed when you pressed the <BREAK> key. The
debugger prompts you for input.

In order to reference variables and arrays by name
while in the debugger, a symbol table must be
present for that program. You create the symbol
table when the program is compiled, by specifying
the M option.

The symbol table is formed as a new item in the
file with an * concatenated to the front of the
item-id. If the symbol table is not present when
a variable is referenced by name, the following
message is printed:

NO SYM TB

7-3

DATA/BASIC Symbolic Debugger

Sample
Exercise

Figure 7-1 shows a sample DATA/BASIC program.
Figure 7-2 shows a sample exercise using the
DATA/BASIC Symbolic Debugger. Boldface text
represents the input you would type on the
terminal. The rest of the text is generated by
the debugger. The debugger commands you see in
this exercise are explained in detail on the
following pages.

TEST3

001 A=123.456
002 B="THIS IS A STRING"
003 DIM X(3)
004 X(1)=123
005 X(2)="HELLO THERE"
006 X(3)=0
007 PRINT A,B
008 PRINT X(1),X(2),X(3)
009 END

Figure 7-1. Sample DATA/BASIC Program

7-4 87-1360

87-1360

OATA/BASIC Symbolic Debugger

Dialogue

IBASIC BP TEST] (M) <RETURN>

:RUII BP 'J'BS'l'] (0) <RETURN>

*E1

*/X <RETURN> X(1)=0- <RETURN>
UNASGN VAR

X(2)=0= <RETURN>
UNASGN VAR

X(3)·0= <RETURN>
UNASGN VAR

*B$=5 <RETURN> +
*G <RBTURII>
*B1 5

*/X(11 <RETURN> 123= <RETURN>

*ft(21 <RETURN> +
*E1 <RBTURJI>

*G <RETURN>
*E6

X(2) HELLO THERE

*G <RETURN>
*E7

X(2) HELLO THERE

*E <RBTURII>
*$ <RETURN> 7

*/A <RETURN> 123.456=<RETURN>

*p <RBTURII> OFF
*8$-10 <RETURN> +
*D <RBTURII>
Tl X(2)
T2
T3
T4
T5
T6
B1 $-5
B2 $-10
B3
B4

*Jt1 <RBTURJI> -

Explanation

Compile program with 'M' option
to create Symbol Table.

Run program with 'D' option to
break before first line is
executed.

,Indicates execution halted
before line 1.
Display array X. Did not
change any elements: value is
zero because no lines have been
executed. Variable unchanged.

Break when line number is 5.
Go,
Indicates that break condition
is satisfied: about to execute
line 5,

Display X(l). Leave unchanged.

Trace variable X(2). Print at
each break. Set Single step.
Break at each statement.
Go.
Indicates execution break
caused by El: program is about
to execute line 6.

X(2) automatically displayed by
trace.
Go.
Indicates execution break
caused by El: program is about
to execute line 7.

Trace value of X(2) displayed
automatically. Set execution
break to normal mode. El off.
Find what line is about to be
executed.

Display variable A. Leave
unchanged.

Turn terminal print off.
Break when line number is 10.
Display trace and break tables.

Kill first break condition
($"5).

*/A <RETURN> 123.456"]56.71 <RETURN>

Figure 7-2.

Display variable A and change
it to 356.71.

Sample Exercise Using the Debugger

7-5

DATA/BASIC Symbolic Debugger

Summary of Debugger Commands

Introduction

Breakpoint
and Trace
Tables

Symbol Table

Execution
Control

Special
Commands

7-6

This section contains a brief description of the
DATA/BASIC Symbolic Debugger commands, organized
by function. Following this summary is a complete
description of each command in alphabetical order.

B

D

K

T

U

Z

E

G

N

@

/

$

?

LP

P

PC

Causes an execution break when a specified
condition is true.

Displays the break and trace tables.

Deletes (kills) breakpoint conditions from
the Breakpoint table.

Traces and prints the value of a specified
variable at each execution break.

Deletes a variable from the trace table or
deletes the entire table.

Assigns the symbol table.

Specifies number of program lines to
execute between execution breaks.

Resumes normal program execution until
another execution break occurs.

Bypasses a specified number of breakpoints
before returning to debugger control.

Toggles the function of any DEBUG
statements found in the program.

Displays or changes variables and arrays
during program execution.

Displays the number of program line that is
about to be executed.

Displays the name of the program currently
running.

Forces all program output to the printer.

Suppresses all output from the DATA/BASIC
program to the terminal, so that only
debugger output is displayed.

Forces printing of any data that is waiting
to be output.

87-1360

DATA/BASIC Symbolic Debugger

Summary of Debugger Commands (Continued)

Exiting the
Debugger

87-1360

END

OFF

Terminates the program.

Terminates the program and logs you off the
system.

7-7

DATA/BASIC Symbolic Debugger

$ Command

Purpose

Syntax

Example

7-8

The $ command displays the number of the program
line that is about to be executed.

$

*$ <RETURN> 7

Indicates that line 007 of the DATA/BASIC program
is about to be executed.

87-1360

/ COlIDRand

Purpose

Syntax

COlIDRents

87-1360

DATA/BASIC Symbolic Debugger

The / command lets you display the value of a
variable and then modify it if you wish.

/[variable-name] [*]

Variable-name can be the name of a simple
variable, an array or an array element.

If an * is used in place of the variable-name, the
values of all the variables in the program are
displayed.

Any system delimiters contained in a displayed
variable are changed to printable characters. All
other control characters are converted to tildes
(~). Because this conversion also takes place
when a statement is executed by single-stepping
with the debugger, the debugger display is not
interrupted by program-generated cursor control.

If the variable does not exist, or if the wrong
symbol table is assigned, the following message is
displayed:

SYM oor FND

It is easy to modify variables in the debugger.
For example:

/CITY <RETURN> ROME=

This command displays the value of variable CITY.
You can then change the value by typing the new
value next to the old one. To leave the value
unchanged, simply press <RETURN>.

If an entire array has been specified, each
element is displayed individually and each can be
changed in turn. To stop the display of array
elements, press the <BREAK> key.

If the /* form of the command is used, the
variables are displayed but you cannot modify
them.

7-9

DATA/BASIC Symbolic Debugger

/ Command (Continued)

Examples */NAME(3)

7-10

Displays the value of the third element in the
array NAME.

*/NAME

Displays the value of every element of array NAME.

/

Displays the values of all the variables in the
program.

*/GRID(4,5)

Displays the value in the fourth row, fifth column
of the matrix GRID.

* HOURS

Displays the value of the variable HOURS.

87-1360

? Command

Purpose

Syntax

Example

87-1360

DATA/BASIC Symbolic Debugger

The ? command displays the name of the program
that is currently executing.

?

*? <RETURN> TEST3

Displays the name of the DATA/BASIC program you
are currently running (in this case, TEST3).

7-11

DATA/BASIC Symbolic Debugger

@ Command

Purpose

Syntax

Comments

Examples

7-12

The @ command inhibits a break if a DEBUG
statement is encountered.

@

If a program contains one or more DEBUG statements
and the D option was specified at run-time, an
execution break occurs every time a DEBUG
statement is encountered.

The @ command toggles the function of the DEBUG
statement. Issuing the @ command one time
inhibits breaking. Issuing it a second time turns
it back on.

The words ON and OFF are printed next to the @ to
indicate the current status of the @ command.

* @ <RETURN> ON

Indicates that any subsequent DEBUG statements
will be ignored.

*@ <RETURN> OFF

Turns the @ command off, so a subsequent DEBUG
statement will cause an execution break.

87-1360

B command

Purpose

Syntax

Comments

Examples

87-1360

DATA/BASIC Symbolic Debugger

The B command causes a break in program execution
when a specified condition is true.

B variable-name operator expression {& condition2}
B $ operator line-number {& condition2}

Variable-name can be a simple variable or an array
element. Expression can be a variable, constant
or array. Operator can be any of the following
logical operators:

< less than
> greater than
= equal to
not equal to
& logical AND

If you specify another condition (condition2)
also, the two conditions must be separated by the
logical AND (&). The break occurs only when both
conditions are true.

The dollar sign ($) indicates a line number in the
program, so it means "when the line number is
equal to ... ".

String constants must be enclosed in quotes, using
the same rules that apply to DATA/BASIC literals.

If the variable does not exist, or if the wrong
symbol table is assigned, the following message is
displayed:

SYM oor FND

A plus sign is printed next to the command if it
is accepted. When the condition is met, an
execution break occurs, and the debugger stops
execution of the program and displays:

*Bt n

T is the breakpoint table entry number and n is
the number of the program line that caused the
break.

*BX>42

Sets a break condition to stop execution when
variable X is greater than 42.

7-13

DATA/BASIC Symbolic Debugger

B command (Continued)

7-14

* BADDRESS=" "

Breaks when variable ADDRESS is null.

*BDATE=INV.DATE&$=22

Breaks when variable DATE is' equal to variable
INV.DATE and the line number equals 22.

* BNAME=""CATHylt &STATE=""CAIt

Break occurs when variable NAME is equal to CATHY
and variable STATE is equal to CA.

*BPRICE(3)=24.98

Breaks when the third element of array PRICE is
equal to 24.98.

87-1360

D command

Purpose

Syntax

Example

DATA/BASIC Symbolic Debugger

The D command displays the Break and Trace tables.

D

*B$=4
*G
*B1 4

*TX(3)

.
*B$=ll
*D

When the D command is issued, the contents of the
Breakpoint and Trace tables are displayed as
follows:

T1 X(3)
T2
T3
T4
T5
T6
B1 $=4
B2 $=11
B3
B4

87-1360 7-15

DATA/BASIC Symbolic Debugger

E command

Purpose

Syntax

Comments

Examples

7-16

The E command lets you specify the number of
program lines to execute between execution breaks.

En

N is the number of program lines that will execute
before another execution break is taken. If n is
omitted, the E command by itself turns the
function off.

The E command will be overridden if a condition in
the Breakpoint table is met.

*E5

Allows five lines of the program to execute before
the next execution break.

*E1

Sets execution control so that only one line of
the program is executed at a time.

*E

Turns the E function off.

*BX=34
*E6

If the condition of X=34 is met, a break occurs
immediately; otherwise, executes six lines of
program code before the next break.

87-1360

END cononand

Purpose

Syntax

Cononents

Examples

87-1360

DATA/BASIC Symbolic Debugger

The END command terminates the DATA/BASIC program
and exits the debugger.

END <RETURN>
END <LINE FEED>

If you press <RETURN> , the program terminates and
control returns to TCL.

If you press the <LINE FEED> key after you type in
END and the program was being executed from a
PROC, the program terminates and control returns
to the next statement in the PROC.

*B$=5 <RETURN>
*G <RETURN>
*B1 5
*END (RETURN>

Terminates program and returns to TCL.

*END <LINE FEED>

Terminates program and returns control to PROC
that called it.

7-17

DATA/BASIC Symbolic Debugger

G command

Purpose

Syntax

Comments

Examples

7-18

The G command resumes normal execution of a
DATA/BASIC program until the next execution break
is encountered.

G{line-number}

If you specify a line-number, program execution
continues with the DATA/BASIC statement on that
line. If you specify a line-number that is
greater than the number of lines in the program,
the following message displays:

> PRcx:;RAM LENGl'H

If you just press <RETURN> after typing G, program
execution continues with the next line in the
program.

Control returns to the debugger when another
execution break occurs.

*B$=12 <RETURN>
*G <RETURN>
*B1 12

The G command resumes program execution until the
condition in the Breakpoint table is satisfied
(i.e., until line 12 is reached).

*G42 <RETURN>

Resumes program execution starting at line 42.

87-1360

K connnand

Purpose

Syntax

Connnents

Examples

87-1360

DATA/BASIC Symbolic Debugger

The K command deletes (kills) one or all of the
breakpoint conditions in the Breakpoint table.

K{n}

If n is specified, it must be in the range 1
through 4. The specified breakpoint is deleted
and the other breakpoints remain unchanged. If n
is not specified, all breakpoint conditions are
deleted.

*K2

Deletes the second breakpoint condition.

*K

Deletes all breakpoint conditions.

7-19

DATA/BASIC Symbolic Debugger

LP connnand

Purpose

Syntax

Connnents

Example

7-20

The LP command sends all program output to the
printer.

LP

Subsequent LP commands toggle the printer
function. The current status of the LP command is
displayed when you type .LP. ON indicates that
output will be sent to the printer, and OFF
indicates that output will go to the terminal.

*LP <RETURN> ON

Turns the LP function on, so that any subsequent
output is sent to the printer.

87-1360

N command

Purpose

Syntax

Comments

Examples

87-1360

DATA/BASIC Symbolic Debugger

The N command lets you bypass a specified number
of breakpoints.

Nx

N lets you bypass x+1 breakpoints before control
returns to the debugger. For example, N3 allows
four breakpoints to pass before execution breaks
again. However, variables being traced are still
printed at each breakpoint.

Press <RETURN> after typing N to reset the
function so that no more breakpoints are bypassed.

*N4

Allows five (4+1) execution breaks to pass before
returning control to the debugger.

*N

Returns the debugger to normal operation, stopping
at every execution break.

7-21

DATA/BASIC Symbolic Debugger

OFF command

Purpose

Syntax

Example

7-22

The OFF command terminates the program and logs
you off the system.

OFF

*B$=12
*G
*B3 12
*OFF

Logs you off the system.

87-1360

P command

Purpose

Syntax

Comments

Example

87-1360

DATA/BASIC Symbolic Debugger

The P command suppresses all output from the
DATA/BASIC program to the terminal, so that only
output from the debugger is displayed.

p

Each time you issue the P command it toggles the
status. The word ON or OFF is displayed next to
the P command to let you know what the current
status is. OFF indicates that program output is
suppressed, while ON means that it displays.

* P <RETURN> OFF

Suppresses program terminal output until another P
command is issued.

7-23

DATA/BASIC Symbolic Debugger

PC command

Purpose

Syntax

Comments

Example

7-24

The PC command forces printing of any data that is
waiting to be output. Its function is similar to
the DATA/BASIC PRINTER CLOSE statement.

PC

Normally, printer output is held until the program
finishes execution. PC lets you print out
anything that is already in the print queue.

*PC

Forces printing of data waiting to be output.

87-1360

T cononand

Purpose

Syntax

Cononents

Examples

87-1360

DATA/BASIC Symbolic Debugger

The T command creates a trace table to trace and
print the values of specified variables at each
execution break.

T{variable-name}

Variable-name can be either a simple variable or
an array element.

Note: Only individual array elements can be
traced.

If the variable does not exist or the wrong s~nbol
table is assigned, the following message displays:

SYM tV!' FND

If the command is accepted, a plus sign (+) is
printed next to the command.

The trace table may contain up to six variable
names whose values are printed whenever an
execution break occurs.

The trace can be turned on or off by specifying T
without the variable-name. Simply type T and
press <RETURN>. The word ON or OFF is displayed
next to the T command to let you know the status
of the trace function.

*TX

Sets a trace for variable X.

*TPRICE(3)

Sets a trace for the third element of array PRICE.

*T <RETURN> OFF

Turns the trace off.

7-25

DATA/BASIC Symbolic Debugger

U command

Purpose

Syntax

Comments

Examples

7-26

The U command deletes variables from the trace
table.

U{variable-name}

If you specify a variable-name, the U command
deletes that variable name from the trace table.
If you omit the variable-name, U deletes the
entire trace table.

*USTATE

Deletes the variable STATE from the trace table.

*UWAGES(3)

Removes the trace for the third element in array
WAGES.

*U

Deletes all variables from the trace table.

87-1360

Z command

Purpose

Syntax

Comments

Examples

87-1360

DATA/BASIC Symbolic Debugger

The Z command assigns the symbol table to the
DATA/BASIC program being debugged.

Z {DICT} file-name item-id

File-name item-id indicates the DATA/BASIC program
you wish to debug.

If a symbol table is present in the same file from
which the program was compiled, it is
automatically assigned to the program. However,
if the symbol table resides in a different file,
the Z command must be used to assign it.

*z BP FORMAT

Assigns the symbol table FORMAT in the BP file to
the current program.

*z DICT BP MAPIT

Assigns the symbol table MAPIT in the dictionary
of the BP file to the current program.

7-27

Chapter 8

87-1360

Chapter 8
Programming Hints and Examples

Programming Hints and Examples

Overview
Using System Delimiters
Cursor Positioning
Opening Files
Repeating Operations . . .
Unknown Number of Multivalues
pythag Program
Guess Program
Inv-Inq Program
Area Program . .
Profits Program

8-3
8-3
8-3
8-3
8-3
8-4
8-5
8-6
8-7
8-8
8-10

8-1

Overview

Using System
Delimiters

Cursor
Positioning

Opening
Files

Repeating
Operations

87-1360

Programming Hints and Examples

This chapter contains a number of general coding
techniques you should keep in mind when writing a
DATA/BASIC program.

The REALITY system uses standard attribute, value
and subvalue delimiters. These should be defined
once at the beginning of the program, then
referenced by their symbol names. For example:

EQUATE AM TO CHAR(254)

EQUATE VM TO CHAR(253)

EQUATE SVM TO CHAR(252)

Attribute Mark

Value Mark

Subvalue Mark

The values are equated to symbols rather than
assigned to variables (as AM=Char(254)) because
you don't need to change them during the program
and by equating them to a symbol they don't
require accessing a variable location each time
they are referenced.

The REALITY system also uses standard Cursor
Positioning Characters which also should be
defined only once and then referenced by symbol
name. For example:

EQU UP TO CHAR(26)
EQU DOWN TO CHAR(lO)
EQU LEFT TO CHAR(21)
EQU RIGHT TO CHAR(6)
EQU BELL TO CHAR(7)

Of course, you can use extended cursor addressing
(@(-lO), etc.) for all of the above. However, the
extended cursor addressing symbols can only be
assigned to variables; they can not be equated to
a symbol.

The OPEN statement is very time-consuming and
should be executed as few times as possible. All
files should be opened to file variables at the
beginning of the program; access to the files can
then be performed by referencing the file
variables .'

Operations should be predefined rather than
repetitively performed. This operation, for
example:

X=SPACE(9-LEN(OCONV(COST, 'MD4'))) :OCONV(COST, 'M04')

8-3

Programming Hints and Examples

Repeating
Operations
(Continued)

Unknown
Number of
Values

8-4

should have been written:

E=OCONV(COST, 'MD4')
S=SPACE(9-LEN(E»
X=S:E

The same is true for the following operation:

FOR 1=1 TO X*Y+Z(20)

NEXT I

should have been written:

TEMP=X*Y+Z(20)
FOR 1=1 TO TEMP

NEXT I

The following LOOP statement could be used to
access an unknown number of values from an
attribute (including null values):

EQU VM TO CHAR(2S3)
READV ATTR FROM ID, ATTNO ELSE STOP
VNO=O
LOOP

VNO=VNO+l
VALUE=FIELD(ATTR,VM,VNO)

WHILE COL2() #0 DO
PRINT VALUE

REPEAT

87-1360

PYTHAG PROGRAM

87-1360

Programming Hints and Examples

The following sample program finds pythagorean
triples.

PRINT
PRINT 'SOME PYTHAGOREAN TRIPLES ARE:'
PRINT
FOR A=1 TO 40

FOR B=1 TO A-l
CC=A*A+B*B
GOSUB 50
IF C = INT(C) THEN PRINT B,A,C

NEXT B
NEXT A
STOP

* SQUARE ROOT SUBROUTINE
50 C=CC/2

END

FOR 1=1 TO 20
X=(C+CC/C)/2
IF C = X THEN RETURN
C=X

NEXT I
RETURN

8-5

Programming Hints and Examples

GUESS PROGRAM

8-6

The following sample DATA/BASIC program is a game
which asks you to guess a number between 0 and
100.

END

HEADING "'N'"
HISSCORE=O; YOURSCORE=O
LOOP

PAGE;* CLEAR SCREEN
PRINT 'GUESS NUMBERS BETWEEN 0 AND 100'
PRINT 'MACHINE:' :HISSCORE: ...
, ':'YOUR:' :YOURSCORE
PRINT
NUM=RND(101)
FLAG = 1
FOR 1=1 TO 6 WHILE FLAG

PRINT 'GUESS ': I :' ':
INPUT GUESS
BEGIN CASE

CASE GUESS<NUM
PRINT 'HIGHER'

CASE GUESS>NUM
PRINT 'LOWER'

CASE 1
FLAG = 0

END CASE
NEXT I
PRINT
IF FLAG THEN

PRINT 'YOU LOST, YOU DUMMY; YOUR: ...
NUMBER WAS ':NUM
HISSCORE=HISSCORE+1

END ELSE
PRINT "YOU WON! GREAT! FABULOUS!!"
YOURSCORE=YOURSCORE+1

END
PRINT
PRINT 'AGAIN?':
INPUT X

WHILE [1,1] # 'N' DO REPEAT

87-1360

Programming Hints and Examples

INV- INQ PROGRAM

87-1360

The following program queries an inventory file.
It reads the dictionary of the INV file to get the
attribute numbers of the part description (DESC)
and the quantity-on-hand (QOH). It then prompts
the user for a part number which is the item-id of
an item in INV. It uses the attribute numbers to
read and display the part description and
quantity-on-hand. The program loops until a null
part number is entered.

*---- Get attribute definitions from DICT INV
OPEN 'DICT','INV' ELSE

*----

*----

*----

END

PRINT 'CANNOT OPEN "DICT INV"'; STOP
END

READV DESC.AMT FROM 'DESC',2 ELSE
PRINT 'CANT READ "DESC" ATTR'; STOP

END

READV QOH.AMT FROM 'QOH',2 ELSE
PRINT 'CANT READ "QOH" ATTR'; STOP

END

Open data portion of INV
OPEN 'INV' ELSE

PRINT 'CANNOT OPEN "INV"'; STOP
END
Prompt for part number
LOOP

PRINT
PRINT 'PART-NUMBER ':
INPUT PN

WHILE PN # "" DO
READ ITEM FROM PN THEN

PRINT DESCRIPTION AND QUANTITY-ON-HAND
PRINT 'DESCRIPTION - ': ITEM<DESC.AMT>
PRINT 'QTY-ON-HAND - ': ITEM<QOH.AMT>

END ELSE
PRINT 'CANNOT FIND THAT PART ':PN

END
REPEAT

8-7

Programming Hints and Examples

AREA PROGRAM

8-8

The following DATA/BASIC program finds the area of
various geometric figures.

*
*

Display figure menu

EQUATE ERASE TO CHAR(12)
T=25; C=45
PRINT ERASE
PRINT @(-4):@(T-3,4):'THIS PROGRAM FINDS THE'
PRINT @(T-3):'AREAS OF GEOMETRIC FIGURES. ':
PRINT @(T+3,7):'TYPE':@(C-2):'CODE'
PRINT @(T):'-------------- ----,
PRINT @(T):'RECTANGLE':@(C):'l'
PRINT @(T):'CIRCLE':@(C):'2'
PRINT @(T):'TRIANGLE':@(C):'3'
PRINT @(T):'PARALLELOGRAM':@(C):'4'
PRINT @(T):'RHOMBUS':@(C):'5'
PRINT @(T):'TRAPEZOID':@(C):'6'

* Prompt for selection
P=@ (1,17) : 'ENTER '
Q=@(1,18):'ENTER '
R=@(1,19):'ENTER '
AREA=@(1,20):'AREA = '
PRINT @(1,16):'ENTER A FIGURE TYPE CODE':

10 PRINT @(26,16):' ':@(25,16):; INPUT CODE

*
*

*
*

*
*

BEGIN CASE

Rectangle
CASE CODE = 1

PRINT P:'LENGTH':; INPUT LENGTH
PRINT Q:'WIDTH ':; INPUT WIDTH
PRINT AREA:LENGTH*WIDTH:

Circle
CASE CODE = 2

PRINT P:'RADIUS':; INPUT RADIUS
PRINT AREA:RADIUS*RADIUS*3.1416

Triangle
CASE CODE = 3

PRINT P: 'BASE':; INPUT BASE
PRINT Q:'ALTITUDE':; INPUT ALTITUDE
PRINT AREA:BASE*ALTITUDE/2

87-1360

Programming Hints and Examples

AREA PROGRAM (Continued)

87-1360

*

*

Parallelogram
CASE CODE == 4

PRINT P:'BASE':; INPUT BASE
PRINT Q:'HEIGHT':; INPUT HEIGHT
PRINT AREA:BASE*HEIGHT

Rhombus
CASE CODE == 5

PRINT P:'LENGTH OF FIRST DIAGONAL': ...
; INPUT DIAG1
PRINT Q:'LENGTH OF SECOND DIAGONAL': ...
; INPUT DIAG2

PRINT AREA:DIAG1*DIAG2/2

* Trapezoid
CASE CODE == 6

PRINT P:'LENGTH OF FIRST BASE': ...
; INPUT BASEl
PRINT Q:'LENGTH OF SECOND BASE': ...
; INPUT BASE2
PRINT R:'HEIGHT':; INPUT HEIGHT
PRINT AREA:HEIGHT*(BASE1+BASE2)/2
CASE CODE <lOR CODE >6
PRINT @(1,18):'ILLEGAL FIGURE CODE'
END CASE

20 PRINT @(1,22): 'ENTER CR TO CONTINUE"
"OR X TO QUIT':; INPUT X

END

IF X MATCHES " THEN
FOR 1==20 TO 17 STEP -1

PRINT @(O,I):EOL:
NEXT I
GOTO 10

END

8-9

Programming Hints and Examples

PROFITS PROGRAM

8-10

This program prints a profits report. A select
must be performed before running this program.

EQU AM TO CHAR(254), VM TO CHAR(253)
BUDGET = 0; REV.BUDGET =

* Input from file
* Total attributes 5, 7, and 23

OPEN 'PROJ' ELSE
PRINT "CANT OPEN PROJ"; STOP

END

READ TOT.PRC FROM 'TOT.PRC' ELSE
PRINT "CANT READ TOT.PRC"; STOP

END

READ REV.TOT.PRC FROM "REV.TOT.PRC" ELSE
PRINT "CANT READ REV.TOT.PRC"
STOP

END

READ NUM.UNITS FROM 'NUM.UNITS' ELSE
PRINT "CANT READ NUM.UNITS"; STOP

END

LOOP WHILE READNEXT ID DO
IF LEN(ID) # Y THEN PRINT

"I.D. NOT 7 CHARACTERS"; STOP
END
READ ITEM FROM ID ELSE

PRINT "CANT READ ":ID; STOP
END
BUDGET = BUDGET + ITEM<5>
IF ITEM<7> > a THEN

REV.BUDGET = REV.BUDGET + ITEM<7>
END
REV.BUDGET = REV.BUDGET + : ...
SUMMATION(ITEM<23»

REPEAT

* Convert to dollars and compute budget totals

BUDGET = BUDGET/lOa
REV.BUDGET = REV.BUDGET/lOO
TOT.PRC = TOT.PRC/lOO
REV.TOT.PRC=REV.TOT.PRC/lOO
OVER. UNDER = BUDGET - REV.BUDGET
TOT.PRC.O.U = TOT.PRC-REV.TOT.PRC

87-1360

Programming Hints and Examples

PROFITS PROGRAM (Continued)

87-1360

* Compute profits

PROJ.PROF = TOT.PRC-BUDGET
REV.PROJ.PROF = REV.TOT.PRC-REV.BUDGET
PROJ.PROF.O.U.= PROJ.PROF-REV.PROJ.PROF

* Compute per/unit profits and percentages

PUI = PROJ.PROF/NUM.UNITS
PU2 = REV.PROJ.PROF/NUM.UNITS
PU3 = PROJ.PROF.O.U.jNUM.UNITS
PI PROJ.PROF/(TOT.PRCjIOO)
P2 REV.PROJ.PROF/(REV.TOT.PRCjIOO)

* Print

END

FMT = 'R2,#14'
PRINT
PRINT " BUDGET: ...
REV-BUDGET":
PRINT" OVER/UNDER"
PRINT" TOTAL SALES PRICE ":TOT.PRC: ...
FMT:REV.TOT.PRC FMT:TOT.PRC.O.UFMT
PRINT" TOTAL COST " : BUDGET: ...
FMT:REV.BUDGET FMT:O.U FMT
PRINT" PROJECTED PROFIT ":PROJ.PROF: ...
FMT:REV.PROJ.PROF FMT:PROJ.PROF.O.U FMT
PRINT" PER UNIT " : ...
PUI FMT:PU2 FMT:PU2 FMT
PRINT" AS % OF SALES " : PI FMT: ...
P2 FMT

8-11

Appendix A. ASCII, Hexadecimal and Decimal Table

DECIMAL HEXADECIMAL ASCII DECIMAL HEXADECIMAL ASCII

000 00 NUL 046 2E .
001 01 SOH 047 2F /
002 02 STX 048 30 0
003 03 ETX 049 31 1
004 04 EaT 050 32 2
005 05 ENQ 051 . 33 3
006 06 ACK 052 34 4
007 07 BEL 053 35 5
008 08 BS 054 36 6
009 09 HT 055 37 7
010 OA LF 056 38 8
011 OB VT 057 39 9
012 OC FF 058 3A
013 OD CR 059 3B . ,
014 OE SO 060 3C <
015 OF SI 061 3D =
016 10 DLE 062 3E >
017 11 DC1 063 3F ?
018 12 DC2 064 40 @
019 13 DC3 065 41 A
020 14 OC4 066 42 B
021 15 NAK 067 43 C
022 16 SYN 068 44 D
023 17 ETB 069 45 E
024 18 CAN 070 46 F
025 19 EM 071 47 G
026 lA SUB 072 48 H
027 1B ESC 073 49 I
028 1C FS 074 4A J
029 ID GS 075 4B K
030 IE RS 076 4C L
031 IF US 077 4D M
032 20 SPACE 078 4E N
033 21 079 4F a
034 22 " 080 50 P
035 23 # 081 51 Q
036 24 $ 082 52 R
037 25 % 083 53 S
038 26 & 084 54 T
039 27 085 55 U
040 28 (086 56 V
041 29) 087 57 W
042 2A * 088 58 x
043 2B + 089 59 Y
044 2C , 090 5A z
045 20 091 5B [

87-1360 A-I

Appendix A. ASCII, Hexadecimal and Decimal Table

DECIMAL HEXADECIMAL ASCII DECIMAL HEXADECIMAL ASCII

092 5C \ 138 8A
093 50] 139 8B
094 5E A 140 8C
095 5F 141 80
096 60 T 142 8E
097 61 a 143 8F
098 62 b 144 90
099 63 c 145 91
100 64 d 146 92
101 65 e 147 93
102 66 f 148 94
103 67 g 149 95
104 68 h 150 96
105 69 i 151 97
106 6A j 152 98
107 6B k 153 99
108 6C 1 154 9A
109 60 m 155 9B
110 6E n 156 9C
III 6F 0 157 90
112 70 P 158 9E
113 71 q 159 9F
114 72 r 160 AO
115 73 s 161 A1
116 74 t 162 A2
117 75 u 163 A3
118 76 v 164 A4
119 77 w 165 AS
120 78 x 166 A6
121 79 Y 167 A7
122 7A z 168 A8
123 7B { 169 A9
124 7C I 170 AA I
125 70 } 171 AB
126 7E 172 AC
127 7F OEL 173 AO
128 80 174 AE
129 81 175 AF
130 82 176 BO
131 83 177 B1
132 84 178 B2
133 85 179 B3
134 86 180 B4
135 87 181 B5
136 88 182 B6
137 89 183 B7

A-2 87-1360

Appendix A. ASCII, Hexadecimal and Decimal Table

DECIMAL HEXADECIMAL ASCII DECIMAL HEXADECIMAL ASCII

184 B8 220 OC
185 B9 221 OD
186 BA 222 OE
187 BB 223 OF
188 BC 224 EO
189 BO 225 . E1
190 BE 226 E2
191 BF 227 E3
192 CO 228 E4
193 C1 229 E5
194 C2 230 E6
195 C3 231 E7
196 C4 232 E8
197 C5 233 E9
198 C6 234 EA
199 C7 235 EB
200 C8 236 EC
201 C9 237 EO
202 CA 238 EE
203 CB 239 EF
204 CC 240 FO
205 CO 241 F1
206 CE 242 F2
207 CF 243 F3
208 00 244 F4
209 01 245 F5
210 02 246 F6
211 03 247 F7
212 04 248 F8
213 05 249 F9
214 06 250 FA
215 07 251 FB SB
216 08 252 FC SVM
217 09 253 FO VM
218 OA 254 FE AM
219 OB 255 FF SM

87-1360 A-3

Messages

87-1360

Appendix B. DATA/BASIC Messages

This appendix presents a list of the messages
which may occur when you compile or run your
DATA/BASIC program. For a complete explanation of
these messages, refer to the manual titled System
Messages.

[83] FRAME IS PART OF BASIC RUNTIME - NOT
UNLOCKED

[86] FILE REFERENCE ATTEMPTED ON FILE NOT
PREVIOUSLY OPENED

[89] FATAL ATTEMPT TO UPDATE BY PROCESS THAT
HAS GROUP READ LOCKED!

CATALOGED PROGRAM HAS xxx MISMATCHES (225)

[241] 'xxx' CATALOGED: xxx FRAMES USED

[310] ITEM IS LOCKED BY LINE xxx

[604] 'xxx' IS AN UNDEFINED LABEL REFERENCE

[960] 'xxx' READ LOCK CLEARED

[961] 'xxx' UPDATE LOCK CLEARED

[962] 'xxx' NOT UPDATE LOCKED BY THIS LINE

LIt FID FID FID FID FID
FID FID FID FID.... (963)

NOT READ LOCKED BY THIS LINE [964]

[965] CURRENT READ/UPDATE LOCK TABLE SIZE IS
xxx DEFAULT READ/UPDATE LOCK TABLE
SIZE IS xxx

[966] READ/UPDATE LOCK TABLE MUST BE EMPTY TO
CHANGE THE SIZE

[967] SIZE MUST BE IN THE RANGE 1 TO xxx

[970] CURRENT ITEM LOCK TABLE SIZE IS xxx
DEFAULT ITEM LOCK 'rABLE SIZE IS xxx

[971] ITEM LOCK TABLE MUST BE EMPTY TO CHANGE
THE SIZE

LIt LEVEL LOCK LOCK LOCK LOCK
LOCK ..•. LOCK LOCK.... (972)

[973] xxx LOCKS LISTED

B-1

Appendix B. DATA/BASIC Messages

Messages (Continued)

B-2

LI# FILEBASE ITEM ID
. LOCK' ... BY' (974)

[975]

[976]

[BO]

[B9]

[BlO]

[Bll]

[B12]

[B13]

[B14]

[B15]

[B16]

[B17]

[B18]

[B19]

[B20]

[B2l]

[B22]

[B23]

[B24]

ITEM LOCKED BY LINE xxx AT LEVEL xxx

'xxx' UNLOCKED

COMPILATION COMPLETED

WRITE, DELETE, OR CLEARFILE OPERATION
ATTEMPTED ON READ ONLY FILE

VARIABLE HAS NOT BEEN ASSIGNED A VALUE;
ZERO USED!

TAPE RECORD TRUNCATED TO x BYTES!

FILE HAS NOT BEEN OPENED

NULL CONVERSION CODE IS ILLEGAL; NO
CONVERSION DONE!

BAD STACK DESCRIPTOR

ILLEGAL OPCODE: xx

NONNUMERIC DATA WHEN NUMERIC REQUIRED;
ZERO USED!

ARRAY SUBSCRIPT OUT-OF-RANGE, ABORT!

ATTRIBUTE NUMBER LESS THAN 1 IS ILLEGAL

ILLEGAL PATTERN

COLI OR COL2 USED PRIOR TO EXECUTING A
FIELD STMT; ZERO USED!

MATREAD: NUMBER OF ATTRIBUTES EXCEEDS
VECTOR SIZE

BRANCH INDEX OF 'x' IS ILLEGAL; BRANCH
TAKEN TO FIRST STATEMENT-LABEL!

BRANCH INDEX OF 'x' EXCEEDS NUMBER OF
STATEMENT-LABELS; BRANCH TAKEN TO LAST
STATEMENT-LABEL!

DIVIDE BY ZERO; RESULT ZERO!

87-1360

Messages (Continued)

87-1360

[B25]

[B26]

[B27]

[B28]

[B29]

[B30]

[B31]

[B32]

[B33]

[B34]

[B35]

[B36]

[B37]

[B38]

[B39]

[B40]

[B41]

[B50]

[B51]

[B52]

[B54]

Appendix B. DATA/BASIC Messages

PROGRAM 'x' HAS NOT BEEN CATALOGED

'UNLOCK x' ATTEMPT BEFORE LOCK!

RETURN EXECUTED WITH NO GOSUB

NOT ENOUGH WORK SPACE

CALLING PROGRAM MUST BE CATALOGED

ARRAY SIZE MISMATCH

STACK OVERFLOW

PAGE HEADING EXCEEDS MAXIMUM OF 1400
CHARACTERS

PRECISION DECLARED IN SUBPROGRAM 'x'

INSUFFICIENT NUMBER OF PARAMETERS PASSED
TO EXTERNAL SUBROUTINE; ABORT!

'M/DICT' INVALID OBJECT OF 'CLEARFILE';
IGNORED!

SYSTEM DICT ILLEGAL OBJECT OF "CLEARFILE";
ABORT!

EXCESSIVE NUMBER OF PARAMETERS PASSED TO
EXTERNAL SUBROUTINE; ABORT!

MATWRITE INCREASED THE NUMBER OF
ATTRIBUTES

DIVISION OVERFLOW; RESULT IN DOUBT!

PAGE FOOTING EXCEEDS MAXIMUM OF 400
CHARACTERS

STRING EXCEEDED ALLOWABLE LENGTH.

FUNCTION WITH ARGUMENT VALUE <= 0
UNDEFINED; ZERO RETURNED!

NEGATIVE VALUE RAISED TO NON-INTEGER
VALUE. ZERO RETURNED!

STRING LENGTH GREATER THAN 32760.
TRUNCATED!

OVERFLOW; RESULT SUSPECT!

B-3

Appendix B. DATA/BASIC Messages

Messages (Continued)

[B55]

[B60]

[B98]

MAT READ/WRITE OPERATION MUST BE TO/FROM A
VECTOR

PROCWRITE ATTEMPTED OUTSIDE OF PROC MODE

GARBAGE COLLECTION/BUFFER UTILIZATION
REPORT

NUMBER OF TIMES GARBAGE COLLECTED: x
TOTAL NUMBER OF BYTES BUFFER USED: x
TOTAL NUMBER OF BYTES ABANDONED x

** BUFFER USAGE =*

BUFFERS/SIZE 50 BYTES 150 BYTES 250 BYTES
-------- --------- ---------

USED x x x
REUSED x x x
ABANDONED x x x

[B99]

*--OR MULTIPLES THEREOF

MAXIMUM NUMBER OF NEW CONTEXT LEVELS
EXCEEDED

[BI00] COMPILATION ABORTED; NO OBJECT CODE
PRODUCED.

[BIOI] MISSING "END", "NEXT", "WHILE", "UNTIL",
"REPEAT" OR "ELSE"; COMPILATION ABORTED,
NO OBJECT CODE PRODUCED.

[B102] BAD STATEMENT

[B103] LABEL 'x' IS MISSING

[B104] LABEL 'x' IS DOUBLY DEFINED

[BIOS] 'x' HAS NOT BEEN DIMENSIONED

[BI06] 'x' HAS BEEN DIMENSIONED AND USED
WITHOUT SUBSCRIPTS

[B107] "ELSE" CLAUSE MISSING

[BI08] "NEXT" STATEMENT MISSING

[B109] VARIABLE MISSING IN "NEXT" STATEMENT

B-4 87-1360

Appendix B. DATA/BASIC Messages

Messages (Continued)

[B110] INVALID 'END' STATEMENT

[B111] "UNTIL" OR "WHILE" MISSING IN "LOOP"
STATEMENT

[Bl12] "REPEAT" MISSING IN "LOOP" STATEMENT

[Bl13] TERMINATOR MISSING

[Bl14] MAXIMUM NUMBER OF VARIABLES EXCEEDED

[B11S] LABEL 'x' IS USED BEFORE THE EQUATE
STMT

[Bl16] LABEL 'x' IS USED BEFORE THE COMMON
STMT.

[Bl17] LABEL 'x' IS MISSING A SUBSCRIPT LIST

[Bl18] LABEL 'x' IS THE OBJECT OF AN EQUATE
STMT AND IS MISSING.

[Bl19] WARNING - PRECISION VALUE OUT OF RANGE -
IGNORED!

[B120] WARNING - MULTIPLE PRECISION STATEMENTS -
IGNORED!

[B121] LABEL 'x' IS A CONSTANT AND CAN NOT BE
WRITTEN INTO

[B122] LABEL 'x' IS IMPROPER TYPE AS OBJECT
OF EQUATE

[B123] UNMATCHED "NEXT", "REPEAT" OR "END CASE";
COMPILATION ABORTED, NO OBJECT CODE
PRODUCED!

[B124] INVALID USE OF RESERVED WORD

[B125] RESERVED WORD USED AS A LABEL. EXAMPLE:
'ELSE=S'

[B126] ITEM-LIST 'x' HAS NOT BEEN CATALOGED WITH
THE SHARE VERB

[B128] SYMBOL 'x' EQUATED TO AN ARRAY ELEMENT
WHICH IS OUT OF RANGE

[B199] PRECISION GREATER THAN 6

87-1360 B-S

Appendix B. DATA/BASIC Messages

Messages (Continued)

System Error
Messages

[B641] HOLD FILE #x ADDED;

ATTEMPT TO READ FROM A NON-SELECT VARIABLE (B900)
[B1000] *** 'LF' OR 'G' NOT ALLOWED AFTER FATAL

MSG ***
[B999] FILE: file-name

ITEM: item-id
COMPILED: date AT time
PRECISION: n

If a DATA/BASIC program aborts with a System Error
Message and enters the debugger (which prompts
with an "!"), you may determine the EDITOR line
number of the statement which was being executed
when the error occurred by typing in:

!G155.1 <RETURN>

The system responds with:

LINE xx [BO] COMPILATION COMPLETED.
FILE: file-name
ITEM: item-id
COMPILED: date AT time
PRECISION: n

B-6 87-1360

Appendix C. Variable Structure and Allocation

Variable Structure

Introduction

Descriptor
Structure

Free Storage

Buffer
Allocation

87-1360

The data area used by a DATA/BASIC program
consists of a descriptor table, free storage area,
and a buffer size table.

The descriptor table contains In' entries of 10
bytes each, where In' is the number of variables
(including array elements) .in the program. The
current limit on the number of descriptors is
3224. A descriptor contains two bytes of type
code which identify the type of the descriptor and
one of the following:

Six byte binary number

Seven byte string
terminated by an SM

Six byte pointer to the
free space area

Base (4 bytes), modulo (2
bytes) separation (2 bytes)

Six byte pointer to a
cataloged subroutine

For numeric variables.

For string values of
seven characters or
less.

For string values
with more than seven
characters.

For file-variables.

For cataloged program
names.

For more information on descriptor structure,
refer to the topic titled "BASIC Verb with Map
Option" in Chapter 6, "DATA/BASIC Commands
Entered at TCL".

The free storage area is made up of buffers of
various S1zes. These buffers are assigned to a
variable if the string to be stored in the
variable cannot fit in its descriptor (that is,
the string has more than seven characters). A
pointer to this area is stored in the descriptor.

Strings longer than 7 bytes are placed in
storage buffers located in the free storage space.

Buffers are 50 bytes, 150 bytes, or multiples of
250 bytes in length. When a string requires a new
buffer, the store processor looks in a table of
abandoned buffers for a buffer of the appropriate
size. If one cannot be found, a buffer size is
calculated, and a buffer of the same size is then
allocated to the variable in question.

C-l

Appendix C. Variable Structure and Allocation

Variable Structure (Continued)

C-2

Allocating free storage this way makes the buffer
larger than the string it will contain, so that
larger s~rings can be stored in the same buffer.
This is important because of the allocation
procedure.

Initially, free storage is one contiguous block of
space. Buffers are allocated from the beginning
of the free storage area. When a string is
assigned to a variable which exceeds the
variable's current buffer size, the buffer is
abandoned and a new buffer is allocated from the
remaining contiguous portion of free storage.

If there is not enough contiguous space for the
new buffer, a procedure called "garbage
collection" takes place. Garbage collection
collects the abandoned buffer space and forms a
single block of contiguous space. If there still
is not enough contiguous space, the program
terminates with the message:

[B28] NOr ENOUGH IDRK SPACE

87-1360

Appendix C. Variable Structure and Allocation

Variable Allocation

Introduction

Passing
Values:
Subroutines

Variables are allocated descriptors in the
following order:

1. Common variables

2. Simple variables

3. Dimensioned variables

Note: If the 'B' option is used with the BASIC
verb, dimensioned variables are allocated
descriptors before simple variables.

The arrangement of descriptors for a main program
and a subroutine may be illustrated with the
following figure:

Values passed through argmnent list

DESCRIPIORS CQMM)N Variables Variables

87-1360

Used by main Used local! y Used locally
program and by main by subroutine
subroutine program on! y program

program only

Figure C-l. Passing Values between Programs

Variables declared as COMMON share the same
locations. There is a one-to-one correspondence
between the variables in both COMMON statements.

When values are passed through the argument list
by CALL and SUBROUTINE statements, the values are
copied back and forth between the two local areas
as indicated in Figure C-l above.

C-3

Appendix C. Variable Structure and Allocation

Variable Allocation (Continued)

Passing
Values:
CHAINed and
ENTERed
Programs

C-4

If subroutine calls are nested, the arrangement of
descriptors is as follows:

Values passed through argument list

COMMON Variables Variables Variables

Used by main Used locally Used locally Used locally
program and by main by subroutine 1 by second
subroutine program only program only subroutine

program only

Figure C-2. Passing Values Through Nested
Subroutine Programs

Values passed through the argument list are copied
as indicated in Figure C-2 above.

Note: You may not execute a CHAIN or ENTER
statement from a subroutine, but you can
CHAIN to or ENTER a program that calls a
subroutine.

Value passing is different when programs are
CHAINed or ENTERed. No copying takes place,
therefore values that are to be passed must be
declared as COMMON variables.

Executing the RUN verb with the 'I' option
guarantees that the common area will not be
reinitialized when CHAINing.

87-1360

Appendix C. Variable Structure and Allocation

Variable Allocation (Continued)

87-1360

Figure C-3 illustrates the descriptor arrangement
for CHAINed or ENTERed programs:

Program 1 COMM)N variables

Used by both Used locally by first program.
Programs. These will be lost when CHAIN

or ENl'ER occurs.

Program 2 COMM)N variables

(Same locations Used locally by second program.
as for first Overwrites variables in first
program.) program.

Figure C-3. Value Passing with CHAINed or ENTERed
Programs

CAUTION

If the CHAINed or ENTERed programs have
COMMON areas of different S1zes, some
COMMON variables may get overwritten.

For example, if the second program (i.e., the one
that you CHAIN to or ENTER) has a smaller COMMON
area than the first program, some COMMON variables
may be lost.

C-5

Introduction

87-1360

Appendix D. User Exit Conversions

The following user exits have been supplied to
perform special processing when used in an ICONV
or OCONV intrinsic function.

Conversion

U307A

U407A

U50BB

U10DD

UOOEO

U10EO

U20EO

Meaning and Usage

Causes terminal to "sleep" until the
specified time (in 24-hour format)
is reached. .Example: DUMMY =
ICONV("9:00" , "U307A") causes the
process to "sleep" until 9:00 am.

Causes terminal to "sleep" until the
specified number of seconds is
reached. Example: DUMMY =
ICONV(30,"U407A") causes the process
to "sleep" for 30 seconds.

Returns line number and account
name. (Similar to TCL verb WHO).
Example: WHO = OCONV(0,"U50BB")
might assign the string "1 SYSPROG".

Returns the system serial number as
specified by the hardware. Example:
SN = OCONV(0,"U10DD") might assign
the value 1279.

Returns a zero if executing a
noncataloged program and a one if
program is cataloged. Example:
CATALOGED = OCONV(O,"UOOEO")

Returns options specified at run­
time in input line in alphabetic
order, commas removed. Example:
OPTIONS=ICONV(0,"U10EO") assigns the
string "DGT" if the options (G,T,D)
are used with the RUN verb or with
the cataloged program name.

Returns TCL input statement (not
valid if program run from a PROC).
The verb, redundant blanks, and
options are removed. Remaining
blanks are replaced with attribute
marks. Example: STMT =
OCONV(0,"U20EO") returns the string
"Bp TEST PGM1" if the TCL input
statement is "RUN BP TEST PGM1 (T)".

D-l

Appendix D. User Exit Conversions

Conversion

U30EO

U40EO

U60EO

U70EO

uaOEO

U90EOt

D-2

Meaning and Usage

Returns a one if a command
generating a select list has
previously been processed (either
from TCL or within a PROC). Returns
zero otherwise (including a
DATA/BASIC SELECT). Example: SEL =
OCONV(0, "U30EO") .

Toggles printing of warning messages
during run-time (i.e., toggles the
'5' option of the RUN verb).
Example: DUMJ.'1Y = ICONV(0,"U40EO").

Returns current setting of terminal
page width. Example: TSIZE =
OCONV(0, "U60EO") .

Sets terminal echo ON (similar to
TCL verb NOHUSH). Example: DUMMY
OCONV(0,"U70EO").

Sets terminal echo OFF (similar to
TCL verb HUSH). Example: DUMMY =
OCONV(0, "UaOEO") .

Returns the specified number
concatenated to the character
indicated by "t". Example: AMOUNT
OCONV(100,"U90EO$") returns the
string "$100".

87-1360

Introduction

87-1360

Appendix E. Mask Character Conversions

The following mask character conversions are
available for DATA/BASIC.

Conversion

MCA

MC/A

MCN

MC/N

MCB

MC/B

MCC;x;y

MCL

MCU

MCT

MCP

Meaning and Usage

Returns only the alphabetic values
from the input string.

Returns only.the nonalphabetic
characters from the input string.

Returns only the numeric characters
from the input string.

Returns only the nonnumeric
characters from the input string.

Returns just the alphabetic and
numeric characters from the input
string.

Removes the alphabetic and numeric
characters from the input string.

Changes all occurrences of string
'x' to string 'y' in the input
string.

Converts all upper case characters
to lower case.

Converts all lower case characters
to upper case.

(Text). Converts all upper case
characters to lower case starting
with the second character in each
word. This also forces the first
character to upper case if
necessary.

Converts all nonprintable characters
(X'OO'-X'lF', X'80'-X'FA') to tildes
(~) .

E-l

Appendix E. Mask Character Conversion

Conversion

MCPN

Meaning and Usage

Same as MCP, but whenever a
nonprintable character is converted
to a tilde, the tilde is followed by
the two character hex representation
of the overwritten character. For
example, the string:

ABCxDEFyGH

where 'x' is a <CTRL>A and 'y' is a
<CTRL>E is returned as:

MCDX Converts the input hex value to its
equivalent hex value.

MCXD Converts the input hex value to its
equivalent decimal value.

Note: MCDX and MCXD each perform the opposite
function if called from DATA/BASIC with an
ICONV rather than an OCONV.

E-2 87-1360

Introduction

Conversion
Codes

87-1360

Appendix F. Date Conversions

The following date conversions are available in
DATA/BASIC. In each case, the conversion is
applied to a date in internal format. These
conversions are used with the OCONV intrinsic
function as well as in output format strings.

Conversion

D{n}{s}

DI

DD

DJ

DM

D~

Meaning and Usage

The value n is an optional single
digit specifying the number of
digits to be printed in the year
field. 0, 1, 2, 3, and 4 are
acceptable values (4 is default).

The value s is an optional
nonnumeric character to be used as
the separator between day, month and
year on output. If s is not
specified, the abbreaviation of the
month is returned. If s is
specified, the numeric value of the
month is returned.

Internal date. This is a special
case of date conversion. It allows
you to convert from external to
internal format as an output
conversion, the inverse of the
normal D conversion. This is a way
to handle dates which are stored in
a file in external format.

Because DI is used as an output
conversion, it may be specified as a
DATA/BASIC format string to convert
a date to internal format. (Remember
that conversions within DATA/BASIC
format strings are always output
conversions. For example:

INPUT input.date
internal.date = input.date '01'

Returns the day of the month.

Returns the Julian day of the year
as a number from 1 to 365 (366 in a
leap year).

Returns the month as a number
from 1 to 12.

Returns the name of the month.

F-l

Appendix F. Date Conversions

Examples

F-2

Conversion

DQ

DW

DWA

DY{n}

Meaning and Usage

Returns the quarter as a number from
1 to 4.

Returns the day of the week as a
number from 1 to 7, where Monday is
1 and Sunday is 7.

Returns the name of the day of the
week.

Returns the year. If the optional
'n' is present and in the range of 0
to 4, it returns the rightmost 'n'
digits of the year. If 'n' is not
present or is in the range of 5 to
9, the year defaults to 4 digits.

In all of the following examples, DAY = DATE()
6940 (DECEMBER 31, 1986).

Conversion

PRINT OCONV(DAY, 'D')

PRINT OCONV(DAy,'D2')

PRINT OCONV(DAY, 'D2/')

PRINT OCONV(DAY,'DWA')

PRINT DAY 'DY'

PRINT DAY 'DM'

And the final example:

PRINT DAY 'DWA':", ": DAY 'DMA':
" ":DAY 'DD':", ":DAY 'DY'

Returns:

WEDNESDAY, DECEMBER 31, 1986

Result

31 DEC 1986

31 DEC 86

12/31/86

WEDNESDAY

1986

12

87-1360

Introduction

Step 1

Step 2

Step 3

87-1360

Appendix G. Using Denationalization from DATA/BASIC

This appendix explains how to denationalize your
DATA/BASIC code for users who may need to use
different languages with the same program. For
more information on denationalization, refer to
the Developer's Guide to Denationalization.

There are no utility programs that implement
denationalization on your DATA/BASIC programs, so
you must follow a number ot steps to make your
program messages work properly.

1. Logon to the account called DENAT. The
following menu appears:

MAIN MENU

1. Language table maintenance
2. Error message file maintenance
3. Character tables maintenance
4. List file names
5. Exit to TCL
6. Logoff

Enter selection:

Figure G-1. DENAT Main Menu

2.

3 .

Select option 5, Exit to TCL.

Create a file in the DENAT account for the
text strings output by your DATA/BASIC
program.

You should create at least one file for each
language used on the system.

The number of files per language should be
equal, and each file should be named
according to its language. For example, a
system in Montreal might have files named
ENGLISH.MSGS and FRENCH.MSGS.

When you have created as many files as you
need, type MENU <RETURN> to return to the
Main Menu.

Add the language files to the denational­
ization tables so your programs can find the
files for the language being used by the
invoking process.

G-1

Appendix G. Using Denationalization from DATA/BASIC

Step 3 (Continued)
Select option 1, Language table maintenance,
from the Main Menu.

The following menu appears:

Language maintenance

1. Add a message
2. Replace a message
3. Delete a message
4. Display a message
5. Create a new message class
6. Translate a message
7. Load a message
8. Define a new language

Enter selection:

Figure G-2. Language Maintenance Menu

G-2

Select option 5, Create a new message class.

When you are prompted for a source file name,
type in your language file name. A separate
source file name must be typed for each
language to be used by the program, but only
one can be input at a time.

When you are prompted for a class number,
type in a number not used by the
denationalization system software. Any
integer between 40 and 79 is valid if it is
not already in use. If the class number you
choose is in use, the following message
displays:

[415] 'CLASSxx' EXISTS ON FILE

When you are prompted for a description of
the class, type in a brief description of the
messages, for example, APPLICATION.MSGS.FILES.
Press <RETURN>. The following text displays:

87-1360

Appendix G. Using Denationalization from DATA/BASIC

Step 3 (Continued)

Step 4

87-1360

This routine is for the input of messages. Messages are keyed in as
nonnal input. All characters are accepted. as input except for the
escape key, which is used. to delimit hex strings fran character strings.
The following characters have special meaning when entered. as the last
character on any input line:
% -- will be replaced by a X' FE '
: -- will be replace by a X' FD'
+ -- will be replaced by a X'FC'. This will supress a cr/lf when the

message is preceded by the PRI.'MSG or
CRLFMSG routine.

Input message or <RETURN> to process

Figure G-3. Entering a Message

4 .

Enter the name of the appropriate message
file (e.g., ENGLISH.I). After you enter each
message, the system displays:

Message number 'n' inserted

Write down the message numbers for each file
and store them in a safe place for future
reference. When you have entered all the
message files, press <RETURN> to terminate
input.

Repeat this process for each language.

Select option 7, Load a message, from the
Language maintenance menu.

When you are prompted for a source file name
and message class, type in the entries you
made in the previous steps.

When you are prompted for a language number
or name, type in the name of the destination
language or the number that defines it. Type
a question mark (?) to see a list of all the
available languages.

The following message displays:

[9100] 'CLASSxx' loaded.

Repeat these procedures for each language
file on the system.

G-3

Appendix G. Using Denationalization from DATA/BASIC

Step 5

G-4

s. Insert code blocks to handle the messages
into your programs at every point where text
strings are output.

Do not hard code your program's messages.
place them in the files you defined in steps
1 through 3.

Note: Good programming practice dictates
that you make the item-id of each item
containing messages for a program the
same as the item-id of the program
itself. This makes message
maintenance much easier and keeps the
item-ids segregated from your code.

Your message handler code blocks should look
something like the following example from an
actual denationalization code segment:

DIM PROS.MSGS(3S) ; * define an array to store the messages
MAT PROS.MSGS = " ; * clear the array
*
FILE.NAME = GETMSG(14,S) ;* get name of file with messages
PROS.NAME = SYSTEM(40) ; * get name of current program
OPEN FILE.NAME 'ID MSG.FILE ELSE S'IDP 201,FlLE.NAME
MATREAD PR(x;. MSGS FROM MSG. FILE, PR(x;. NAME ELSE S'IDP 202, PR(x;. NAME

Notes: PROG.MSGS(3S) defines the number of
messages used by this program as 35.
PROG.MSGS is an array that stores the
messages used by this program. Each
message should be its own attribute.

GETMSG(14,S) defines the message class to
be accessed as 14 and the message number
to be obtained as S.

SYSTEM(40) returns the name of the
program.

87-1360

Example

87-1360

Appendix G. Using Denationalization from DATA/BASIC

The following DATA/BASIC program, TEST.PROG in
file BP, has not been denationalized.

TEST.PROG

CLEAR
OPEN 'TEST' TO TEST.FILE ELSE STOP 201, 'TEST'
CRT @(-I):'INPUT ITEM ID': ; INPUT 10
LOOP

READ ITEM FROM TEST.FILE,ID THEN
CRT 'ITEM FOUND!'
FOR X=1 TO 10

PRINT ITEM<X>
NEXT X
LOOP

CRT CRT 'EVERYTHING OK?': ; INPUT ANS,1
UNTIL ANS='Y' DO

CRT 'LINE NUMBER TO CHANGE': ; INPUT LINE.NO
CRT 'NEW DATA': ; INPUT LINE
ITEM<LINE.NO>=LINE

REPEAT
WRITE ITEM ON TEST.FILE,ID

END ELSE
CRT 'ITEM NOT ON FILE' ; RQM

END
REPEAT
END

To make this program usable to speakers of any
language, you must take a number of steps to
create the appropriate files and items.

The steps to be followed, in the order given, are:

1. Create a new message class (40, for example)
in the DENAT account that contains only one
message. The message is ENGLISH.APPL.MSGS.

Note that this is message 0 of class 40.

2. Create a file called ENGLISH.APPL.MSGS in the
BP account.

3. Create an item called TEST.PROG in the
ENGLISH.APPL.MSGS file in the BP account.
Put all the messages used by the DATA/BASIC
program TEST.PROG into the TEST.PROG item.

Note that the names of the DATA/BASIC program
and the item are identical. The identical
names are not required, but they do make it
easier to maintain the system.

G-5

Appendix G. Using Denationalization from DATA/BASIC

Example (Continued)

G-6

TEST.PROG would look like this:

TEST.PROG
001 INPUT ITEM ID
002 ITEM FOUND
003 EVERYTHING OK?
004 LINE NUMBER TO CHANGE
005 NEW DATA
006 ITEM NOT ON FILE
007 Y

Each attribute of the item corresponds to one of
the messages output by the DATA/BASIC program
called TEST.PROG.

4. To make the DATA/BASIC program TEST.PROG work
with the denationalized system, insert the
following code segment into the program
following the CLEAR statement:

DIM PROG.MSGS(10)
MSG.FILE=GETMSG(40,0)
OPEN MSG.FILE TO MESSAGES ELSE STOP 201,MSG.FILE
PROG.NAME=SYSTEM(40)
MATREAD PROG.MSGS FROM MESSAGES,PROG.NAME ELSE

STOP 202,PROG.MSG

This code reads the messages from the item
TEST.PROG in the ENGLISH.APPL.MSGS file and stores
them in the variable PROG.MSGS. You can then
retrieve each message as needed from PROG.MSGS and
display it on the terminal.

Note that the parameter set to 40 in the GETMSG
function defines the number of the class being
accessed and the parameter set to 0 defines the
message number within that class. In this case,

. 40 is the message class called CLASS40 and 0 is
the message ENGLISH.APPL.MSGS within that message
class.

The fully denationalized version of the TEST.PROG
program appears below.

87-1360

Appendix G. Using Denationalization from DATA/BASIC

Example (Continued)

TEST.PROG

87-1360

CLEAR
DIM PROG.MSGS(10)
MSG.FILE=GETMSG(40,0)
OPEN MSG.FILE TO MESSAGES ELSE STOP 201,MSG.FILE
PROG.NAME=SYSTEM(40)
MATREAD PROG.MSGS FROM MESSAGES,PROG.NAME ELSE

STOP 202,PROG.MSG
OPEN 'TEST' TO TEST.FILE ELSE STOP 201,'TEST'
CRT @(-I):PROG.MSGS(I): ; INPUT ID
LOOP

READ ITEM FROM TEST.FILE,ID THEN
CRT PROG.MSGS(2)
FOR X=1 TO 10

PRINT ITEM<X>
NEXT X
LOOP

CRT; CRT PROG.MSGS(3): INPUT ANS,1
UNTIL ANS=PROG.MSGS(7) DO

CRT PROG.MSGS(4): ; INPUT LINE.NO
CRT PROG.MSGS(S): ; INPUT LINE
ITEM<LINE.NO>=LINE

REPEAT
WRITE ITEM ON TEST.FILE,ID

END ELSE
CRT PROG.MSGS(6) ; RQM

END
REPEAT
END

G-7

command, 2-4, 2-20, 4-111
:/1= operator, 2-16
$ command, 7-8
& operator, 2-20
* command, 2-4, 4-111, 7-3
* operator, 2-9
+ operator, 2-9
+ unary plus, 2-9
- operator, 2-9
- unary minus, 2-9
I command, 7-9
! operator, 2-9

operator, 2-9, 2-11
; statement separator, 2-3
< operator, 2-16
= operator, 2-16
> operator, 2-16
? command, 7-11
@ command, 7-12
@ function, 5-7

A

abbreviations, 1-4
aborts, B-1
ABORT statement, 4-8
ABS function, 5-11
absolute value, 5-11
accessing array elements, 3-4
accessing PROC, 4-5
accessing SCREENPRO, 4-5
accessing TCL, 4-5, 4-17
ALPHA function, 5-12
AND operator, 2-20
array elements, 3-3
arithmetic expressions, 2-9
arithmetic relations, 2-16
ASCII function, 5-13
ASCII table, A-I
ASSIGN statement, 4-10
assignments, 2-8

B

B command, 7-13
BASIC verb, 6-3

with Map (M) option, 6-6
BITCHANGE function, 5-14
BITCHECK function, 5-15
BITLOAD function, 5-16
bit manipulation, 5-5
BITRESET function, 5-17
BITSET function, 5-18
blank lines, 2-3

87-1360

blank spaces, 2-3
BLIST verb, 6-8

Index

branching statements, 4-3
Breakpoint table, 7-6, 7-13,

7-15, 7-19
BREAK statement, 4-11
BREF verb, 6-13
buffer allocation, C-l
BVERIFY verb, 6-14

c

CALL statement, 4-13, C-4
CASE statement, 4-15
CATALOG verb, 6-15
CAT operator, 2-11
CHAIN statement, 4-15
CHANGE function, 5-19
CHAR function, 5-19
CHECKSUM function, 5-21
CLEAR statement, 4-19
CLEAR-BASIC-LOCKS, 4-124
CLEARFILE statement, 4-20
COL1() function, 5-22
COL2() function, 5-22
comments, 2-4, 2-16, 4-111
COMMON statement, 4-17, 4-21,

C-3
compiling a program, 6-3
concatenation, 2-11, 4-95
constants, 2-6
continuing lines, 2-5
control statements, 4-3
conventions, 1-3
conversions, date, 2-27, 5-36,

5-48, F-1
masked character, E-1
user exit, D-1

COS function, 5-23
COUNT function, 5-24
cross-reference, 6-13
CRT statement, 4-23
cursor control, 5-7, 8-3

D

D command, 7-15
DATA statement, 4-24
DATA/BASIC statements, 4-3
date conversion, 2-27, 5-36,

5-48, F-1
date, 5-4
DATE function, 5-25
DB PROC, 6-17

Index-1

Index

DCOUNT function, 5-26
debugger, 1-5, 2-3, 4-26, 7-3
DEBUG statement, 4-26
decimal table, A-I
definition of DATA/BASIC, 1-4
DELETE-CATALOG verb, 6-18
DELETE function, 3-9, 4-27,

5-27
DEL statement, 4-27
DELETE statement, 4-29
DELETELIST statement, 4-30
delimiters, system, 8-3
denationalization, 5-33, G-l
descriptor, 6-7, C-l
dimensioned arrays, 3-3, 4-7
DIM(ENSION) statement, 3-4,

4-31
DL/ID, 4-20
DO clause, 4-66
DQUOTE function, 5-29
dynamic arrays, 3-5, 4-7, 5-5
dynamic array reference, 3-9

E

extraction, 3-10
deletion,' 3-15
insertion, 3-15
replacement, 3-12

E command, 7-16
EBCDIC function, 5-30
ECHO statement, 4-32
ELSE clause, 2-22
ENABLE-BREAK-KEY, 4-11
END command, 7-17
ENTER statement, 4-34, C-4
EQ operator, 2-16
EQU(ATE) statement, 3-9, 4-35
END statement, 4-33
ERRMSG file, 4-8, 4-120
error messages, B-1
examples of programs, 8-3
executing a program, 6-21
executing a program from a

PROC, 6-23
execution locks, 4-65, 4-124
EXP function, 5-31
EXTRACT function, 3-9, 5-32

F

features of DATA/BASIC, 1-4
FIELD function, 5-33
file I/O statements, 4-6

Index-2

FIND statement, 4-37
FINDSTR statement, 4-38
FOOTING statement, 4-39
FOR statement, 4-40
format conversions, 5-4
format strings, 2-23
free storage, C-l

G

G command, 7-18
garbage collection data, 6-21
GE operator, 2-16
GETLIST statement, 4-42
GETMSG function, 5-34
GOSUB statement, 4-45
GO(TO) statement, 4-44
GROUP function, 5-35
GROUPSTORE statement, 4-46
GT operator, 2-16

H

HEADING statement, 4-48
hexadecimal table, A-I

I

ICONV function, 5-36
IF statement, multiline, 4-52

single-line, 4-50
INCLUDE statement, 4-54, 6-10
INDEX function, 5-38
INPUT statement, 4-55
input statements, 4-5
INPUT USING statement, 4-57
INS statement, 4-59
INSERT function, 3-9, 4-59,
5-40

INT function, 5-40
interprogram transfer
statements, 4-4

I/O conversions, 5-4

K

K command, 7-19

L

labels, 2-3
LEN function, 5-41
LE operator, 2-16
line continuation, 2-5

87-1360

listing a program, 6-8
LN function, 5-42
LOCATE statement, 4-61
LOCK statement, 4-65
logarithms, 5-42
logical expressions, 2-20
logical functions, 5-5
logical indenting, 6-9
logical operators, 2-20
looping statements, 4-3
LOOP statement, 4-66
LP command, 7-20
LT operator, 2-16

M

map descriptor format, 6-7
magnetic tape I/O, 4-106,

4-128
mask character conversion,

E-1
mask decimal conversion, 5-36,

5-48
math functions, 5-4
MAT statement, 4-68
MATBUILD statement, 4-70
MATCH(ES) operator, 2-16, 2-18
MATINPUT USING statement, 4-72
MATPARSE statement, 4-73
MAT READ statement, 4-75
MATREADU statement, 4-76
matrix, 3-3
MATWRITE statement, 4-77
MATWRITEU statement, 4-78
MAXIMUM function, 5-43
MID, 4-20
messages, B-1
MINIMUM function, 5-44
MOD function, 5-45
multiline IF statement, 4-52
multiple format strings, 2-18
multiple formatted values,

2-24
multiple match strings, 2-18
multiple statements, 2-3

N

N command, 7-21
NE operator, 2-16
NEXT statement, 4-79
NOT function, 5-46
NULL statement, 4-80
null string, 2-16, 2-18

87-1360

numeric constants, 2-6
numeric functions, 5-4
NUM function, 5-47

o
OCONV function, 5-48
OFF command, 7-22

Index

ON GOSU~ statement, 4-81
ON GO TO statement, 4-83
OPEN statement, 4-85, 8-3
operator precedence, 2-9
OR operator, 2-20
output conversion, 2-24
output formatting, 4-95
output statements, 4-5

p

P command, 7-23
passing values, 4-13, 4-17,

4-21, 4-122, C-3
pattern matching, 2-18
PC command, 7-24
PAGE statement, 4-87
PERFORM statement, 4-88
POINTER-FILE, 4-30, 4-42,

4-127
precedence, 2-9, 2-20
PRECISION statement, 4-91
PRINT statement, 4-93
PRINT using output formatting,

4-95
PRINT-CATALOG verb, 6-19
PRINT-HEADER verb, 6-20
PRINTER statement, 4-97
PRINTERR statement, 4-98
PROCREAD statement, 4-99
PROCWRITE statement, 4-100
programming examples, 8-3
programming hints, 8-3
program storage, 2-5
program termination
statements, 4-4
PROMPT statement, 4-101
PWR function, 5-50

R

READ statement, 4-102
READLIST statement, 4-103
READNEXT statement, 4-104
READT statement, 4-106
READU statement, 4-107

Index-3

Index

READV statement, 4-108
READVU statement, 4-109
relational expressions, 2-16
relational operators, 2-16
RELEASE statement, 4-110
REM function, 5-51
REM statement, 2-4, 4-111
REPEAT clause, 4-66
REPLACE function, 3-9, 5-52
reserved words, 2-5, 2-6,

4-21, 4-31
RETURN statement, 4-112
REWIND statement, 4-113
RND function, 5-54
RQM statement, 4-114
RUN verb, 6-21

s

SCREENPRO, 4-57, 4-72
select variables, 4-104, 4-115
SELECT(E) statement, 4-115
SEQ function, 5-55
setting locks, 4-7
SHARE statement, 4-117
SHARE verb, 4-117
sharing programs, 6-15
SIN function, 5-56
single-line IF statement, 4-50
SLEEP statement, 4-114, 4-119
SPACE function, 5-57
SPOOLER function, 5-58
SQRT function, 5-60
SQUOTE function, 5-61
statement-labels, 2-3
statement map, 6-6
STEP clause, 4-40
STOP statement, 4-120
storing DATA/BASIC programs,

2-5
STR function, 5-62
string assignment, 2-8
string constants, 2-6
string expressions, 2-11
string manipulation, 5-3
string relations, 2-16
SUB(ROUTINE) statement, 4-122,

C-3
subroutine branching
statements, 4-4

substring assignment, 2-13
substring extraction, 2-13
substrings, 2-8, 2-11, 2-13,

5-3

Index-4

SUMMATION function, 5-63
symbolic debugger, 1-5, 2-3,

4-26, 7-3
symbol table, 6-6, 7-3, 7-6
SYSTEM function, 4-10, 4-11,

5-64
SYSTEM dictionary, 4-20
system delimiters, 8-3
system messages, B-6

T

T command, 7-25
tabulation, 4-95
TAN function, 5-68
tape I/O, 4-106, 4-113, 4-128
TCL command, 6-1
THEN/ELSE clause, 2-22, 4-33
time, 5-4
TIME function, 5-69
TIMEDATE function, 5-70
Trace table, 7-6, 7-15, 7-25,

7-26
TRIM function, 5-71

U

U command, 7-2
unary minus, 2-9
unary plus, 2-9
UNASSIGNED function, 7-26
UNLOCK statement, 4-124
UNTIL clause, 4-40, 4-66
user exit conversion, D-1

v
variable allocation, C-3
variable assignment, 2-8
variable descriptor, 6-7
variable map, 6-7
variable structure, C-1
variables, 2-6
vector, 3-3
verifying cataloged programs,

6-14
video effects, 6-6

w

WEOF statement, 4-125
WHILE clause, 4-40, 4-66
WRITE statement, 4-126
WRITELIST statement, 4-127

87-1360

WRITET statement, 4-128
WRITEU statement, 4-129
WRITEV statement, 4-130
WRITEVU statement, 4-131

z

Z command, 7-27

87-1360

Index

Index-S

DOCUMENTATION COMMENTS

Title: Publication Number: ----------------------------- -------------

Did you find any errors? If so, please be specific and indicate
the page number on which the error is found.

Did you find this document understandable, usable and well organ­
ized? Please make suggestions for its improvement.

Is any material missing? If so, please describe and indicate
where it should be placed.

Name: Date: --- --------------

Position: -------------------- Organization: ________________________ __

Street: Phone: -- ---------------
State: City: ____________________________ __ -------- Zip: ------------

This form is for document comments and corrections only. Any
system problems are to be reported to your appropriate support
group.

Please use the back of this form or attach additional sheets if
you have further comments.

Please return this form to McDonnell Douglas Computer Systems
Company, P.O. Box 19501, Irvine, CA 92713 Attn: End User
Documentation, Mail Stop: RYN

